Những câu hỏi liên quan
YH
Xem chi tiết
TT
5 tháng 4 2017 lúc 20:28

C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)

c=\(\frac{1}{1}-\frac{1}{10}\)

c=\(\frac{9}{10}\)

còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!

Bình luận (0)
H24
Xem chi tiết
ST
12 tháng 7 2018 lúc 21:53

a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)

b, c cùng 1 câu phải k

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)

\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)

Bình luận (0)
LT
15 tháng 7 2018 lúc 10:48

A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)

NHA

HỌC TỐT

Bình luận (0)
LG
Xem chi tiết
LP
22 tháng 5 2020 lúc 11:16

Câu b đề sai nha, bây giờ đặt \(a=\sqrt{2017},b=\sqrt{2018}\)

Ta có \(\frac{a^2}{b}+\frac{b^2}{a}< a+b\Leftrightarrow ab\left(\frac{a^2}{b}+\frac{b^2}{a}\right)< ab\left(a+b\right)\)

\(\Leftrightarrow a^3+b^3< ab\left(a+b\right)\)(1)

Mà \(ab\left(a+b\right)\le\left(a^2-ab+b^2\right)\left(a+b\right)=a^3+b^3\)(2)

Từ (1), (2) => Sai

Bình luận (0)
 Khách vãng lai đã xóa
TL
22 tháng 5 2020 lúc 20:22

a) Ta có:

\(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{k+1-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)

Cho k=1,2,....,n rồi cộng từng vế ta có:

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+....+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)\)\(+\left(\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}\right)+....+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n-1}}< 2\)

Bình luận (0)
 Khách vãng lai đã xóa
TD
Xem chi tiết
DH
18 tháng 2 2018 lúc 19:48

À khác cái dấu nhưng đề phải là giải phương trình chứ
Đặt 2017-x=a => x-2018=-a-1 phương trình trở thành:
\(\frac{a^2+a\left(-a-1\right)+\left(a-1\right)^2}{a^2-a\left(-a-1\right)+\left(a-1\right)^2}=\frac{19}{49}\)
\(\Leftrightarrow\frac{a^2+a+1}{3a^2+3a+1}=\frac{19}{49}\)
\(\Leftrightarrow49\left(a^2+a+1\right)=19\left(3a^2+3a+1\right)\)

\(\Leftrightarrow49a^2+49a+49=57a^2+57a+19\)

\(\Leftrightarrow8a^2+8a-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3}{2}\\a=-\frac{5}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=2015,5\\x=2019,5\end{cases}}}\)
Vậy......................

Bình luận (0)
DH
17 tháng 2 2018 lúc 11:51

Tử và mẫu giống nhau mà

Bình luận (0)
TA
Xem chi tiết
DA
3 tháng 5 2018 lúc 22:07

gggggggggggggggg

Bình luận (0)
HT
Xem chi tiết
MK
Xem chi tiết
BF
Xem chi tiết
XO
25 tháng 1 2020 lúc 20:38

Ta có : \(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-2019.2-\frac{2019}{2017}+2019.2\)

\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
25 tháng 1 2020 lúc 20:43

\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)

\(=\frac{2018}{2017}-2018.\frac{2019}{1009}-\frac{2019}{2017}+2019.2\)

\(=\frac{2018}{2017}-2.2019-\frac{2019}{2017}+2.2019\)

\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AN
13 tháng 3 2018 lúc 13:17

Dễ thấy \(x=2017\)không là nghiệm của phương trình.

Ta có:

\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)

Đặt \(\frac{x-2018}{2017-x}=a\)

\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)

\(\Leftrightarrow24a^2+50a+24=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)

Bình luận (0)