Violympic toán 9

DS

Tính \(M=\sqrt{1+2017^2+\left(\frac{2017}{2018}\right)^2}+\frac{2017}{2018}\)

LH
11 tháng 9 2019 lúc 21:32

Đặt \(2017=a\)

=>\(2018=a+1\)

Với mọi \(a\in N\) có:\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{a^2+2a+1+a^2\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{2a^2+2a+1+a^4+2a^3+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a^4+2a^2+1\right)+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}\)

=\(\sqrt{\frac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}=\sqrt{\frac{\left(a^2+a+1\right)}{\left(a+1\right)^2}}=\left|\frac{a^2+a+1}{a+1}\right|\)(do \(a\ge0\))

=\(\frac{a\left(a+1\right)+1}{a+1}=a+\frac{1}{a+1}\)

=> \(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=a+\frac{1}{a+1}\)

Thay a=2017 có:

\(\sqrt{1+2017^2+\left(\frac{2017}{2018}\right)^2}=2017+\frac{1}{2017+1}=2017+\frac{1}{2018}\)

=>\(\sqrt{1+22017^2+\left(\frac{2017}{2018}\right)^2}+\frac{2017}{2018}=2017+\frac{1}{2018}+\frac{2017}{2018}\)

<=> M=2017+1=2018

Vậy M=2018

Bình luận (0)
DS
11 tháng 9 2019 lúc 21:10

Vũ Minh Tuấn Lê Thị Thục Hiền @No choice teen

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
CG
Xem chi tiết
VV
Xem chi tiết
BB
Xem chi tiết
HT
Xem chi tiết
NB
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
MD
Xem chi tiết