Cho C = 1 + 1/3 + 1/3^2+ 1/3^3+ ... + 1/3^2012 cm rằng C < 3/2
Cho B = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^2011 + 1/3^2012. CM: B<1/2
=> 3B = 1 + 1/3 +...+1/3^ 2011
=> 3B-B=2B = 1 - 1 / 3^2013 < 1 ( do 1 / 3^ 2013 >0) => B < 1 / 2 (đpcm)
cho các số thực a,b,c thoả mãn a^2+b^2+c^2+1/a^2+1/b^2+1/c^2=6 chứng minh rằng a^2012+b^2012+c^2012=3
cho B=1/3+1/3^2+1/3^3+.......+1/3^2011+1/3^2012 cm B<1/2
a)1^2/1×2×2^2/2×3/3^2/3×4×...×999^2/999×1000
b)A=1/101+1/102+1/103+...+1/150. CM: 1/3 <A <1/2
c) So sánh: A= 2011+2012/2012+2013 và B=2011/2012+2012/2013
d) So sánh: S= 1/11+1/12+1/13+...+1/20 và 1/2
e) CM: 7/12<1/41+1/42+1/43+...+1/80 <1
f) So sánh: A= 2^2014+1/2^2014 và B= 2^2014+2/2^2014+1
g) Rút gọn: B= (1-1/2)×(1-1/3)×(1-1/4)×...×(1-1/20)
h) (1+1/2)×(1+1/3)+(1+1/4)×...×(1+1/99)
Các bạn chỉ cần làm những câu hỏi các bạn biết thôi nha. Mình đang cần gấp.
g: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{19}{20}=\dfrac{1}{20}\)
h: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot..\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)
f: \(A=1+\dfrac{1}{2^{2014}}\)
\(B=\dfrac{2^{2014}+1+1}{2^{2014}+1}=1+\dfrac{1}{2^{2014}+1}\)
mà \(2^{2014}< 2^{2014}+1\)
nên A>B
Câu 1:
A ,Thực hiện phép tính:
[6(-1/3)^3+3*(-1/3)+1]-(-1/3-1)
b, Biết đồ thị hàm số y = f(x) = (a+2)x+5 đi qua điemr M(2;3)
Xác định giá trị của a
c,Cho A= 1/2+ 1/3+ 1/4+....+ 1/2012+1/2013
B= 2012/1+ 2011/2+ 2010/3+...+2/2011+1/2012
Tìm nghiệm các đa thức:
a) -3x^3+5x^2-2x
b) -1/2x^4+1/8x^2
c)-1/3(3x+1)(5-2x)(2013x-2012)
d)3x^2-x-10
e)x^2-4x+3
cm đa thức ko có nghiệm
a)x^2+x-1
b)2013x^2012+1
c)4x^2-4x+3
Cho B = 1 x 2 x 3 x ... x 2012 x (1+1/2+1/3+...+1/2012
Chứng minh rằng B chia hết cho 2013
a/Tính tổng
M=1/5^0+1/5^1+1/5^2+...+1/5^2012
b/Chứng minh rằng 2012^2013-1 và 2012^2013+1 không cùng là số nguyên tố
c/Chứng minh rằng 2+2^2+2^3+...+2^2009+2^2010 chia hết cho 42
a, 5M = 5+1+1/5+1/5^2+.....+1/5^2011
4M=5M-M=(5+1+1/5+1/5^2+.....+1/5^2011)-(1+1/5+1/5^2+.....+1/5^2012)
= 5-1/5^2012
=> M = (5 - 1/5^2012)/4
Tk mk nha
Cho A= 3^0+3^1+3^2+3^3+...+3^2011+3^2012.Chứng minh rằng:(A-1)chia hết cho 40
A=(3^0+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+...+(3^2009+3^2010+3^2011+3^2012)
A=40+3^4*(1+3+3^2+3^3)+...+3^2009*(1+3+3^2+3^3)
A-1=40+80*40+...+3^2009*40
A-1=40*(1+80+..+3^2009)