cho 6 điểm A,B,C,D,E,F bất kì . CMR:
VT AB+VT CD+VT EF= VT AD + VT CF+ VT EB
CMR : VT AB = VT BC
Cho tam giác ABC, M là trung điểm của AB
a, Dựng điểm D, E sao cho vt AD= vt BC; vt AE = vt MC
b, C, D, E thẳng hàng
Cho tam giác ABC có trọng tâm G và điểm M là trung điểm BC. khẳng định đúng là: A. Vt GA = 2 vt GM B. Vt GA = -2 vt GM C. Vt GM = 1/3 vt MA D. Vt AB + vt AC= vt AM Giải nhanh giúp em với ạ
Giúp mình mấy bài toán này với
1) Cho tam giác ABC trọng tâm G, K đối xứng với B qua G. M là trung điểm BC. CMR:
6 vt MK +4 vt AB + vt CB = vt 0
2) Cho tam giác ABC có AB=6, AC=8 . phân giác trong là AD, phân giác ngoài là AE, Biểu diễn vt AD, AE theo vt AB, AC
1) 6MK+ 4AB+ CB=0
6MK+ 4AM+ 4MB+ CM+ MB=0
4AK+ CK+ MK+ 5MB=0
4GC+ GA+ MA+ GC+ 5 MG+ 5GB=0
4GC+ MA+ 5MG+ 4GB=0
4GC+ 4GA+4GB=0
=> Thỏa mãn yêu cầu đề bài
2)
* áp dụng tính chất đường phân giác chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.
=> CD/AC=DB/AB
<=> 6CD= 8DB
=> 6 vectoCD= 8vectoDB
6CD+ 8BD=0
6CA+ 6AD+ 8 BA+ 8AD=0
14AD= 6AC+ 8AB
AD=3/7AC+ 4/7AB
* cũng áp dụng tính chất đường phân giác
EB/EC=AB/AC
8EB=6EC
=> 8 vecto EB= 6vecto EC
8EA+ 8AB= 6EA+ 6AC
2EA= 6AC- 8AB
EA= 3AC- 4AB
Cho hình thang ABCD (AB//CD) CD=2AB M là trung điểm AB
Đặt vt BM =vt a;vt BC =vt b.Trên đoạn MC lấy I sao cho MI=k .MC (k thuộc R) phân tích vt BI,BD theo vt a và b .tìm k để B,I,D thẳng hàng
Cho lục giác đều ABCDEF có M,N,P lần lượt là trung điểm của AB,CD,EF
a. Chứng minh : vt IM + vt IN + vt IP=1/2(vt IA + vt IB + vt IC + vt ID + vt IE + vt IF) với mọi I
b. Tìm G để vt GA + vt GB + vt GC + vt GD + vt GE + vt GF=vt 0
c. Gọi G1,G2,G3,G4,G5,G6 lần lượt là trọng tâm của tam giác ABC , tam giác DEF , tam giác BCD , tam giác EFA , tam giác CDE , tam giác FAB. Chứng minh G1G2 , G3G4 , G5G6 đồng
Cho tam giác ABC, gọi A1,B1,C1 lần lượt là trung điểm của các cạnh BC,CA,AB
Đặt vt BB1 = vt u , vt CC1 = vt v . Tính vt BC, vt CA, vt AB theo vt u và vt v
1, Cho tứ giác ABCD. Các điểm M, N theo thứ tự thay đổi trên cạnh AD, BC sao cho \(\frac{AM}{AD}\)= \(\frac{CN}{CB}\) . Các điểm E, F lần lượt là trung điểm của AC và BD. Chứng minh I luôn chuyển động trên đoạn EF
2 Cho tứ giác ABCD. Tìm tập hợp điểm M thoả mãn hệ thức |vt MB + 4vt MC - 2vtMD | = | 3vt MA|
3 Cho tam giác ABC. Gọi I là trực tâm tam giác. Chứng minh tanA. vt IA + tanB .vt IB + tan C. vtIC = vt 0
4 Cho đường thẳng d và tam giác ABC. Tìm M thuộc d sao cho
a) | vt MA + vt MB + vt MC | nhỏ nhất
b) | vt MA + vt MB + 2vt MC | nhỏ nhất
5 Cho tam giác ABC, tìm tập hợp điểm M thoả mãn
a) | vt MA + vt MB + vt MC | = 1,5 | vt MB + vt MC |
b) | vt MA +3vt MB -2vt MC | = | 2vt MA - vt MB - vt MC |
Cho tam giác ABC. M là trung điểm của AB, I là trung điểm BC và N thoả mãn vt NA +3 vt NC =0 a) tính vt MN theo vt AB và vt AC b) tính vt IM theo vt IA và vt IC
a, Gọi D là trung điểm của MN \(\Rightarrow\overrightarrow{MN}=2\overrightarrow{MD}\).
Ta có: \(\overrightarrow{NA}+3\overrightarrow{NC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{AN}=3\overrightarrow{NC}\) \(\Leftrightarrow AN=3NC\)
\(\overrightarrow{MD}=\overrightarrow{AD}-\overrightarrow{AM}=\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)-\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AN}-\frac{1}{2}\overrightarrow{AM}\)
\(\overrightarrow{MD}=\frac{3}{8}AC-\frac{1}{4}\overrightarrow{AB}\Rightarrow\overrightarrow{MN}=\frac{3}{4}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}\)
b, IM là đường trung bình của tam giác ABC
\(\Rightarrow\) \(\overrightarrow{IM}=\frac{1}{2}\overrightarrow{CA}=\frac{1}{2}\left(\overrightarrow{IA}-\overrightarrow{IC}\right)\)
Cho tam giác ABC có AB = 2 ,D là trung điểm của AB. Giá trị của vt AB x vt DC + vt BC x vtDA + vt CA x vt DB bằng bao nhiêu ?
Bạn tự hiểu tất cả bên dưới đều là vecto nhé:
\(=AB\left(DB+BC\right)+BC.DA+CA.DB\)
\(=AB.DB+AB.BC+BC.DA+CA.DB\)
\(=DB\left(AB+CA\right)+BC\left(AB+DA\right)\)
\(=DB.CB+BC.DB\)
\(=DB\left(CB+BC\right)=0\)