Những câu hỏi liên quan
H24
Xem chi tiết
NL
12 tháng 12 2021 lúc 10:21

Cách 1:

GPT :\(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) - Hoc24

Cách 2:

Đặt \(\left\{{}\begin{matrix}\sqrt{25x-25}=a\\\sqrt{x+7}=b\end{matrix}\right.\)  \(\Rightarrow3x-4=\dfrac{a^2-b^2}{8}\)

Pt trở thành:

\(a-b=\dfrac{a^2-b^2}{8}\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-8\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
H24
Xem chi tiết
NT
4 tháng 9 2019 lúc 7:43

a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$

Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.

Bình luận (0)
CT
Xem chi tiết
NL
11 tháng 12 2021 lúc 22:38

Đặt \(\sqrt{x^2-3x+2}=t\ge0\)

\(\Rightarrow log_3\left(t+2\right)+5^{t^2-1}-2=0\)

Nhận thấy \(t=1\) là 1 nghiệm của pt

Xét hàm \(f\left(t\right)=log_3\left(t+2\right)+5^{t^2-1}-2\)

\(f'\left(t\right)=\dfrac{1}{\left(t+2\right)ln3}+2t.5^{t^2-1}.ln5>0\) ; \(\forall t\ge0\)

\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm

\(\Rightarrow t=1\) là nghiệm duy nhất

\(\Rightarrow\sqrt{x^2-3x+2}=1\)

\(\Rightarrow...\)

Bình luận (0)
TL
Xem chi tiết
NQ
Xem chi tiết
PA
16 tháng 8 2017 lúc 19:41

\(\sqrt{x^2-3x+2}-\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

\(\Leftrightarrow\left(\sqrt{x^2-3x+2}-\sqrt{x-2}\right)-\left(\sqrt{x^2+2x-3}+\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\dfrac{\left(x^2-3x+2\right)-\left(x-2\right)}{\sqrt{x^2-3x+2}+\sqrt{x-2}}-\dfrac{\left(x^2+2x-3\right)-\left(x+3\right)}{\sqrt{x^2+2x-3}-\sqrt{x+3}}=0\)

\(\Leftrightarrow\dfrac{\left(x-2\right)^2}{\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x-2}}-\dfrac{\left(x-2\right)\left(x+3\right)}{\sqrt{\left(x+3\right)\left(x-1\right)}-\sqrt{x+3}}=0\)

\(\Leftrightarrow\left(x-2\right)\left[\dfrac{x-2}{\sqrt{x-2}\left(\sqrt{x-1}+1\right)}-\dfrac{x+3}{\sqrt{x+3}\left(\sqrt{x-1}-1\right)}\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left[\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\right]=0\)

Pt \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}-\dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}=0\) vô no

(vì \(\dfrac{\sqrt{x-2}}{\sqrt{x-1}+1}< \dfrac{\sqrt{x+3}}{\sqrt{x-1}-1}\forall x\ge2\Rightarrow VT< 0\))

=> x - 2 = 0

<=> x = 2 (nhận)

Bình luận (0)
PA
16 tháng 8 2017 lúc 19:50

\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)

\(\Leftrightarrow\dfrac{\left(4x+1\right)-\left(3x-2\right)}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)

\(\Leftrightarrow\dfrac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)\left(x+3\right)=0\)

TH1:

x + 3 = 0

<=> x = - 3 (loại)

TH2:

\(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}=0\)

\(\Leftrightarrow\sqrt{4x+1}+\sqrt{3x-2}=5\)

\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)+\left(\sqrt{3x-2}-2\right)=0\)

\(\Leftrightarrow\dfrac{4x+1-9}{\sqrt{4x+1}+3}+\dfrac{3x-2-4}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\dfrac{4\left(x-2\right)}{\sqrt{4x+1}+3}+\dfrac{3\left(x-2\right)}{\sqrt{3x-2}+2}=0\)

\(\Leftrightarrow\left(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}\right)\left(x-2\right)=0\)

Pt \(\dfrac{4}{\sqrt{4x+1}+3}+\dfrac{3}{\sqrt{3x-2}+2}>0\forall x\ge\dfrac{2}{3}\) => vô no

=> x - 2 = 0

<=> x = 2 (nhận)

~ ~ ~

Vậy x = 2

Bình luận (0)
PA
16 tháng 8 2017 lúc 20:07

\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)

\(\Leftrightarrow\sqrt{2\left(x^2+4x+3\right)}-\left[\left(2x+2\right)-\sqrt{x^2-1}\right]=0\)

\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(4x^2+8x+4\right)-\left(x^2-1\right)}{\sqrt{x^2-1}+2x+2}=0\)

\(\Leftrightarrow\sqrt{2\left(x+3\right)\left(x+1\right)}-\dfrac{\left(x+1\right)\left(3x+5\right)}{\sqrt{\left(x-1\right)\left(x+1\right)}+2\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{\sqrt{x+1}\left(3x+5\right)}{\sqrt{x+1}\left(\sqrt{x-1}+2\sqrt{x+1}\right)}\right]=0\)

\(\Leftrightarrow\sqrt{x+1}\left[2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\right]=0\)

TH1

x + 1 = 0

<=> x = - 1 (loại)

TH2

\(2\sqrt{x+3}-\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}=0\)

\(2\sqrt{x+3}=\dfrac{4x+12}{2\sqrt{x+3}}>\dfrac{3x+5}{\sqrt{x-1}+2\sqrt{x+1}}\forall x\ge1\)

=> VT > 0

=> vô no

~ ~ ~

Vậy pt vô no

Bình luận (0)
ND
Xem chi tiết
BL
Xem chi tiết
TL
18 tháng 6 2019 lúc 11:49

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

Bình luận (0)
TL
18 tháng 6 2019 lúc 11:49

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

Bình luận (0)
TL
18 tháng 6 2019 lúc 11:49

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

Bình luận (0)
LT
Xem chi tiết
KK
4 tháng 9 2016 lúc 22:12

Ptrình này vô nghiệm bn ạ

Bình luận (0)
AR
Xem chi tiết
NL
21 tháng 2 2020 lúc 14:29

ĐKXĐ: ...

\(\Leftrightarrow\frac{25\left(x-1\right)-\left(x+7\right)}{5\sqrt{x-1}+\sqrt{x+7}}=3x-4\)

\(\Leftrightarrow\frac{8\left(3x-4\right)}{5\sqrt{x-1}+\sqrt{x+7}}=3x-4\)

\(\Rightarrow\left[{}\begin{matrix}3x-4=0\\5\sqrt{x-1}+\sqrt{x+7}=8\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow5\left(\sqrt{x-1}-1\right)+\sqrt{x+7}-3=0\)

\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{x-1}+2}+\frac{x-2}{\sqrt{x+7}+3}=0\)

Bình luận (0)
 Khách vãng lai đã xóa