CMR:\(A=8x^9-9x^8+1\) chia hết cho \(B=\left(x-1\right)^2\)
CMR:
a)8x^9-9x^8+1 chia hết cho(x-1)^2
b)x^2-x^3-x^7 chia hết x^2-2
a)(8x^9 - 8 x^8) -(x^8-1)=8x^8(x-1) - (x-1)(x^7+...+1)
=(x-1)(8x^8-x^7-x^6-...-1)
=(x-1)(x^8-x^7 + (x^8-x^6).....(x^8-1) mà (x^8-1) , (x^8-6) ,....x^8-1 lần lượt đều chia hết cho x-1. Vậy bt đã cho chia hết cho (x-1)^2
cmr 8x^9-9x^8+1 chia hết cho (x-1)^2
Phân tích đa thức thành nhân tử (bạn tự phân tích)
Ta có: \(8x^9-9x^8+1=\left(x-1\right)^2\left(8x^7+7x^6+6x^5+5x^4+4x^3+3x^2+2x+1\right)\)chia hết cho \(\left(x-1\right)^2\)
\(\Rightarrowđpcm\)
CMR
a,A=x2 - x9 - x1945 chia hết cho B=x2 - x-1
b,C=8x9 - 9x8 +1 chia hết cho D=(x-1)2
\(f\left(x\right)=8x^9-9x^8+1;g\left(x\right)=\left(x-1\right)^2\)
Chứng minh rằng: \(8x^9-9x^8+1⋮\left(x-1\right)^2\)
CMR
a ) x50+x10+1 chia hết cho x20+x10+1
b ) x2-x9-x1945 chia hết cho x2-x+1
c ) x10-10x+9 chia hết cho (x-1)2
d ) 8x9-9x8+1 chia hết cho (x-1)2
CẢM ƠN CÁC BẠN TRƯỚC NHA MÌNH ĐANG CẦN GẤP >> GIÚP MÌNH NHÉ
c) x10 - 10x + 9
= x10 - x - 9x + 9
= x( x9 - 1) - 9( x - 1)
= x( x - 1)( x8 + x7 + x6 +...+ x + 1) - 9( x - 1)
= ( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9]
Do : ( x - 1) chia hết cho ( x- 1)( x - 1)
-->( x - 1)[ x( x8 + x7 + x6 +...+ x + 1) - 9] chia hết cho ( x - 1)2
Hay , x10 - 10x + 9 chia hết cho ( x - 1)2 , đpcm
d) 8x9 - 9x8 + 1
= 8x9 - 8x8 - x8 + 1
= 8x8( x - 1) - ( x8 - 1)
= 8x8( x - 1) - ( x - 1)( x7 + x6 +...+ x + 1)
= ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ]
Do : ( x - 1) chia hết cho ( x - 1)( x - 1)
--> ( x - 1)[ 8x8( - x7- x6 -...-x - 1) ] chia hết cho ( x - 1)( x - 1)
Hay , 8x9 - 9x8 + 1 chia hết cho ( x - 1)2 , đpcm
Chứng minh rằng:
a) \(A=x^2-x^9-x^{1945}⋮B=x^2-x+1\)
b) \(C=8x^9-9x^8+1⋮D=\left(x-1\right)^2\)
b, ta có
8\((x)^{9}\)-\(9(x)^{8} +1 \)= (8x^9 -8x^8)-(x^8-1)
=8x^8(x-1)-(x-1)(x^7+x^6+x^5+...+x+1)
=(x-1)(8x^8-x^7-x^6-......-x-1)
=(x-1)[(x^8-x^7)+(x^8-x^6)+.....+(x^8-1)]
=(x-1)[x^7(x-1)+ x^6(x^2-1)+.......+(x-1).(x^7+x^6+.....+x+1)]
=(x-1)^2.[x^7+x^6(x+1)+x^5(x^2+x+1)+.....+(x^7+x^6+...+x+1)]
\(\Rightarrow\) C chia hết cho D(dpcm)
Bài 1: CMR \(\left(x^4-4x^3+5ax^2-4bx+c\right)\)chia hết cho \(\left(x^3+3x^2-9x-3\right)\)thì a+b+c=0
\(\Rightarrow\left\{{}\begin{matrix}30+5a=0\\60+4b=0\\c-21=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5a=-30\\4b=-60\\c=0+21\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-6\\b=-15\\c=21\end{matrix}\right.\)
\(\Rightarrow a+b+c=\left(-6\right)+\left(-15\right)+21\)
\(\Rightarrow a+b+c=0\left(đpcm\right).\)
Chúc bạn học tốt!
Chứng minh đa thức \(f\left(x\right)=9x+\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\) chia hết cho đa thức \(g\left(x\right)=x^2+8x+10\)