(15x-3)^2019=1
Tim 2 STN x,y
15x+2020y=2019
Ta có: x,y \(\in\)N => x,y \(\ge\) 0
+) Nếu y = 0 => 15x + 2020.0 = 2019
=> 15x + 0 = 2019
=> 15x = 2019
=> x = 2019/15 (ktm)
+) Nếu x = 0 => 15.0 + 2020y = 2019
=> 2020y = 2019
=> y = 2019/2020 (ktm)
+) Nếu x,y > 0 => 15x + 2020y > 2019 (VT)
Mà VP = 2019
=> VT \(\ne\)VP
=> pt vô nghiệm
Vậy ko có giá trị x,y thõa mãn
Tìm cặp số x, y sao cho
15x + 2020y = 2019
15x+2020y=2019
15x+(2020-1)y=2019
15x+2019y=2019
Để 2019y=2019 thì Y=1
khi đó ta có: 15x+2019=2019
15x=0 => x=0
Vậy cặp số x,y là 0;1 (tmđk)
Tính giá trị của biểu thức: P(x)=\(\left(x^3+15x-25\right)^{2019}\) với x=\(\sqrt[3]{13-7\sqrt{6}}+\sqrt[3]{13+7\sqrt{6}}\)
giải giúp mình với
\(x=\sqrt[3]{13-7\sqrt{6}}+\sqrt[3]{13+7\sqrt{6}}\Rightarrow x^3=26-15x\)
\(x^3+15x-25=1\Rightarrow\left(x^3+15x-25\right)^{2013}=1\)
Vậy P(x)=1 với .....
Tính A biết:
A=9x8+15x5+3x4-3x+2019 tại x thỏa mãn 3x7+5x5+x3-1=0
AAi tra lời nhanh nhất mình tick
bài đây 0 phù hợp với toán lớp 7.
Đề tự chế
Ko giải
\(\dfrac{5}{3}\) \(\sqrt{15x}\)- \(\sqrt{15x}\) -2 = \(\dfrac{1}{3}\) \(\sqrt{15x}\)
\(ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-\dfrac{1}{3}\sqrt{15x}=2\\ \Leftrightarrow\sqrt{15x}\left(\dfrac{5}{3}-1-\dfrac{1}{3}\right)=2\\ \Leftrightarrow\dfrac{1}{3}\sqrt{15x}=2\Leftrightarrow\sqrt{15x}=6\Leftrightarrow15x=36\\ \Leftrightarrow x=\dfrac{12}{5}\left(tm\right)\)
\(\dfrac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\dfrac{1}{3}\sqrt{15x}\)
\(ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{2}{3}\sqrt{15x}-\dfrac{1}{3}\sqrt{15x}=2\\ \Leftrightarrow\dfrac{1}{3}\sqrt{15x}=2\Leftrightarrow\sqrt{15x}=6\\ \Leftrightarrow15x=36\Leftrightarrow x=\dfrac{12}{5}\left(tm\right)\)
5 phần 3 căn 15x -căn 15x -2 =1 phần 3 căn 15x
Nhìn bài toán xong còn bạn nào có thể làm cho mình ko
1. x=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)
2.Chứng minh: a + b + c = 2019 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2019\) thì 1 trong 3 số phải có 1 số bằng 2019
3. Giải
a, \(\left|x-2\right|\cdot\left(x-1\right)\cdot\left(x+1\right)\cdot\left(x+2\right)=4\)
b, \(\frac{15x}{x^2-3x+4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)
\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)\(=\sqrt{6+2.1,4.\sqrt{3-\sqrt{1,4+2.1,7+\sqrt{18-8.1,4\text{}}}}}-1,7\)
\(=\sqrt{6+2,8\sqrt{3-\sqrt{1,4+3,4+\sqrt{18-11,2}}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+\sqrt{6,8}}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{4,8+2,6}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-\sqrt{7,4}}}-1,7\)
\(=\sqrt{8,8\sqrt{3-2,7}}-1,7\)
\(=\sqrt{88\sqrt{0,3}}-1,7\)
\(=\sqrt{88.0,54}-1,7\)
\(=\sqrt{47,52}-1,7\)
\(=6,9-1,7\)
\(=5,2\)
2,Mệt với câu 1 rồi nên câu 2 và câu 3 chịu
giải pt
\(\dfrac{5}{3\sqrt{15x}}-\sqrt{15x}+11=\dfrac{1}{3\sqrt{15x}}\)
Đặt \(\sqrt{15x}=a\)
Pt sẽ là \(\dfrac{5}{3a}-a+11=\dfrac{1}{3a}\)
=>\(\dfrac{4}{3a}=a-11\)
\(\Leftrightarrow3a^2-33a-4=0\)
=>\(a=11.12\)
=>căn 15x=11,12
=>15x=123,6544
hay \(x\simeq8,24\)