Cho \(a+b=3,ab=1\). Khong tìm giá trị của a;b. Hãy tính giá tri biểu thức:
\(a^2+b^2,a-b,a^3+b^3,a^3-b^3,a^4+b^4\)
Cho a+b=1, tìm giá trị của a và b để a^3+b^3+ab đạt giá trị nhỏ nhất?
a^3+b^3+ab=(a+b)(a^2+b^2-ab)+ab=a^2+b^2
mà 2(a^2+b^2)>=(a+b)2(vì a^2+b^2>=2ab)
\(\Rightarrow\)a^2+b^2>=1/2
Cho a+b≤1. Tìm giá trị nhỏ nhất của S =\(\dfrac{1}{a^3+b^3}\)+\(\dfrac{1}{a^2b}+\dfrac{1}{ab^2}\)
\(S=\dfrac{1}{a^3+b^3}+\dfrac{\dfrac{9}{4}}{3a^2b}+\dfrac{\dfrac{9}{4}}{3ab^2}+\dfrac{1}{4ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng Engel có:
\(S\ge\dfrac{\left(1+\dfrac{3}{2}+\dfrac{3}{2}\right)^2}{a^3+3a^2b+3ab^2+b^3}+\dfrac{1}{4ab}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{\left(a+b\right)^3}+\dfrac{1}{\left(a+b\right)^2}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{1}+\dfrac{1}{1}.\dfrac{4}{1}=20\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Vậy GTNN của \(S=20\) khi \(a=b=\dfrac{1}{2}\)
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bạn nên viết ra từng câu
Chứ để như thế này khó nhìn lắm
bạn hỏi từ từ thôi
Cho a+b=1 .Tìm giá trị nhỏ nhất của: a3 + b3 +ab
Ta có
a3 + b3 + ab = (a + b)(a2 - ab + b2) + ab
= a2 + b2
Ta lại có
\(a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
Vậy GTNN là \(\frac{1}{2}\)đạt được khi a = b = \(\frac{1}{2}\)
cho a,b,c là các số thực thỏa mãn a,b≥0;0≤c≤1 và a2+b2+c2 =3.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=ab+bc+ca+3(a+b+c)
\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)
\(P_{max}=12\) khi \(a=b=c=1\)
Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)
\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)
\(\Rightarrow\sqrt{3}\le a+b+c\le3\)
\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)
Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)
\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)
\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị
thế bạn bt hok
cho hai số a,b thỏa mãn a+b=1
tìm giá trị nhỏ nhất của biểu thức B=a^3+b^3+ab
\(B=a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
Với \(a+b=1\)ta có: \(B=a^2-ab+b^2+ab=a^2+b^2\)\
Từ \(a+b=1\)\(\Rightarrow b=1-a\)
\(\Rightarrow B=a^2+\left(1-a\right)^2=a^2+1-2a+a^2=2a^2-2a+1\)
\(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}=2\left(a^2-2.\frac{1}{2}a+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)
hay \(B\ge\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a-\frac{1}{2}=0\)\(\Leftrightarrow a=\frac{1}{2}\)
\(\Rightarrow b=1-\frac{1}{2}=\frac{1}{2}\)
Vậy \(minB=\frac{1}{2}\)\(\Leftrightarrow a=b=\frac{1}{2}\)
cho biểu thức A= (\(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}\))
a. tìm đk xác định và rút gọn A
b. tìm tất cả giá trị của x để A>\(\dfrac{1}{2}\)
c. tìm tất cả các giá trị để B=\(\dfrac{7}{3}A\),đạt giá trị nguyên
d. tìm tất cả các giá trị để A nhỏ nhất.
-Cho a,b thuộc Z thỏa (a^2-ab+b^2) chia hết cho 2. Chứng minh(a^3+b^3) chia hết cho 8
-Tìm hai số nguyên liên tiếp mà hiệu các bình phương của hai số đó bằng 2013
-Tìm các số nguyên n để 2013/[(4n^2)-4n+3] có giá trị nguyên
-Cho biết tồn tại hai số thực a,b khác 0 thỏa 1/a -1/b =1/ab. Tính giá trị M= (a^3 - b^3 +1)/(a^2 + b^2 -1)
Bài 2:
Gọi hai số cần tìm là a;a+1
Theo đề, ta có:
\(\left(a+1\right)^2-a^2=2013\)
=>2a+1=2013
=>2a=2012
hay a=1006
Vậy: hai số cần tìm là 1006 và 1007
a)Cho a,b thuộc Z thỏa ( a^2-ab+b^2) chia hết 2. C/m (a^3+b^3) chia hế cho 8
b)Tìm hai số nguyên liên tiếp mà hiệu các bình phương của hai số đó bằng2013
c)Tìm các số nguyên n để 2013/((4n)^2-4n+3) có giá trị nguyên
d)Cho biết tồn tại hai số thực a,b khác 0 thỏa 1/a +-1/b=1/ab. Tính giá trị M= (a^3-b^3+1)/(a^2+b^2-1)