Những câu hỏi liên quan
H24
Xem chi tiết
AH
18 tháng 8 2021 lúc 19:03

Lời giải:

$-\frac{4}{5}=\cos 2x=2\cos ^2x-1$

$\Leftrightarrow \cos ^2x=\frac{1}{10}$

Vì $x\in (\frac{\pi}{4}; \frac{\pi}{2})$ nên $\cos x>0$

$\Rightarrow \cos x=\sqrt{\frac{1}{10}}$

$\sin^2x=1-\cos ^2x=\frac{9}{10}$
Vì $x\in (\frac{\pi}{4}; \frac{\pi}{2})$ nên $\sin x>0$

$\Rightarrow \sin x=\frac{3}{\sqrt{10}}$

$\sin (x+\frac{\pi}{3})=\sin x\cos \frac{\pi}{3}+\cos x\sin \frac{\pi}{3}$

$=\sqrt{\frac{9}{10}}.\frac{1}{2}+\sqrt{\frac{1}{10}}.\frac{\sqrt{3}}{2}=\frac{\sqrt{30}+3\sqrt{10}}{20}$

Bình luận (1)
SK
Xem chi tiết
NH
23 tháng 5 2017 lúc 14:21

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 15:57

a)     y = sinx

-        Khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{7\pi }}{2}} \right)\)

+ Vẽ đồ thị hàm số:

+ Đồng biến trên khoảng \(\left( { - \frac{{9\pi }}{2}; - 4\pi } \right)\)

+ Nghịch biến trên khoảng; \(\left( { - 4\pi ; - \frac{{7\pi }}{2}} \right)\)

-        Khoảng \(\left( {\frac{{21\pi }}{2};\frac{{23\pi }}{2}} \right)\)

+ Vẽ đồ thị hàm số:

+ Đồng biến trên khoảng: \(\left( {11\pi ;\frac{{23\pi }}{2}} \right)\)

+ Nghịch biến trên khoảng: \(\left( {\frac{{21\pi }}{2};11\pi } \right)\)

Bình luận (0)
BT
Xem chi tiết
BT
Xem chi tiết
TY
Xem chi tiết
NC
Xem chi tiết
NC
8 tháng 9 2021 lúc 8:50

Trên \(\left(-\dfrac{\pi}{2}+k.2\pi;\dfrac{\pi}{2}+k.2\pi\right)\) chọn 2 giá trị của x (x1 và x2) sao cho x1 > x2

Xét f(x1) - f(x2) = sinx1 - sinx2

 = 2cos\(\dfrac{x_1+x_2}{2}\) . sin \(\dfrac{x_1-x_2}{2}\)

Do \(\dfrac{x_1+x_2}{2}\in\left(0;\dfrac{\pi}{2}\right)\)

⇒ cos\(\dfrac{x_1+x_2}{2}\) > 0 

Mà \(sin\dfrac{x_1-x_2}{2}\) > 0 

nên f(x1) - f(x2) > 0 

Vậy đồng biến

Nghịch biến tương tự

Bình luận (4)
LN
Xem chi tiết
NL
17 tháng 4 2019 lúc 18:09

\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)

\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)

\(A=0\)

\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)

\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)

\(B=\frac{1}{4}\)

\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)

\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)

\(C=\frac{3}{2}\)

\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)

\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)

\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)

\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)

Bình luận (0)
NN
30 tháng 4 2019 lúc 11:15

Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là

Bình luận (0)
NV
Xem chi tiết
NL
22 tháng 3 2021 lúc 22:23

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

Bình luận (0)