Những câu hỏi liên quan
NN
Xem chi tiết
NN
3 tháng 9 2016 lúc 9:46

giúp mình với

Nhanh mình tick cho

 

Bình luận (0)
GB
Xem chi tiết
GB
Xem chi tiết
HT
Xem chi tiết
UN
9 tháng 12 2015 lúc 9:22

Bạn có thể vào đây tham khảo Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Nhấn vào dòng chữ màu xanh 

Bình luận (0)
OO
Xem chi tiết
NT
Xem chi tiết
NT
8 tháng 5 2016 lúc 10:59

Mình làm bài 2 nhé:

Ta có: \(\frac{1}{2^2}<\frac{1}{2\times3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3^2}<\frac{1}{3\times4}=\frac{1}{3}-\frac{1}{4}\)

....

\(\frac{1}{50^2}<\frac{1}{50\times51}=\frac{1}{50}-\frac{1}{51}\)

Tổng các vế ta sẽ có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}=\frac{49}{102}<1\)

Bình luận (0)
TD
Xem chi tiết
WS
Xem chi tiết
LC
2 tháng 4 2017 lúc 9:40

bạn phân tích thì ra

Bình luận (0)
DH
2 tháng 4 2017 lúc 9:51

Trừ 1 đi thì ta chỉ cần chứng minh từ \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}\)                                                                                                         \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)                                                                                                                                                       \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)      ....... cứ nhu vậy cho đến \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vì \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

 Vậy S < 2

Bình luận (0)
FS
Xem chi tiết
HT
29 tháng 3 2017 lúc 19:42

sửa đề : S < 1

\(s< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+..................+\frac{1}{9.10}\)

\(\Leftrightarrow S< 1-\frac{1}{10}\)

vậy S < 1

Bình luận (0)