Phân tích đa thức sau thành tích bằng phương pháp dùng hằng đẳng thức
48 - 4y2 - 4y
Phân tích đa thức thành tích bằng phương pháp dùng hằng đẳng thức
48 - 4y2 - 4y
=4^2.3-4y^2-4y
=4.(12-y^2-y)
hol tot
nho k nhe ae
good luck
Phân tích đa thức bằng phương pháp dùng hằng đẳng thức
48 - 4y2 - 4y
\(48-4y^2-4y=-\left(4y^2+4y-48\right)\)
\(=-\left[\left(2y\right)^2+2.2y+1-49\right]\)
\(=-\left[\left(2y+1\right)^2-7^2\right]\)
\(=-\left(2y-6\right)\left(2y+8\right)\)
bài 1:phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
bài 2:phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
mình cần gấp sos
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
Bài 2:
7) \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2+\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
8) \(x^3+64=\left(x+4\right)\left(x^2+4x+16\right)\)
9) \(\left(a+b\right)^2-\left(2a-b\right)^2=\left(a+b+2a-b\right)\left(a+b-2a+b\right)=3a\left(-a+2b\right)\)
10) \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)=2a\cdot2b=4ab\)
11) \(\left(a+b\right)^3+\left(a-b\right)^3=\left(a+b+a-b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=2a\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2a\left(3a^2+b^2\right)\)
12) \(\left(6x-1\right)^2-\left(3x+2\right)^2=\left(6x-1+3x+2\right)\left(6x-1-3x-2\right)=\left(9x+1\right)\left(3x-3\right)\)
1:
1: ,4x^2-6x=2x(2x-3)
2: 9x^3y^2+3x^2y^2=3x^2y^2(3x+1)
3: x^3+2x^2+3x=x(x^2+2x+3)
4: 2x^2-4x=2x(x-2)
5: 3x-6y=3(x-2y)
6: x^2-3x=x(x-3)
7: 6x^2y+4xy^2+2xy
=2xy(3x+2y+1)
8: 5x^2(x-2y)-15x(x-2y)
=(x-2y)(5x^2-15x)
=5x(x-3)(x-2y)
9: =3(x-y)+5y(x-y)
=(x-y)(5y+3)
10: =(x-1)(3x+5)
11: =2(2x-1)-3(2x-1)
=-(2x-1)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức: x3+64
Phân tích đa thức 10x - 25 - x2 thành nhân tử bằng phương pháp dùng hằng đẳng thức.
\(10x-25-x^2=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.x.5+5^2\right)=-\left(x-5\right)^2\)
10x - 25 - x2
= x2- 10x - 25
= - ( x2 +10x +25)
= -(x2 + 2.x.5+52 )
= - (x+5 )2
\(10x-25-x^2=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
1. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
x^4.y^4 - z^4
(x+y+z)^2 - 4z^2
-1/9x^2 + 1/3xy - 1/4y^2
Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$
$=(xy-z)(xy+z)(x^2y^2+z^2)$
$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$
$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$
$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$
Câu trả lời của cô quá đúng luôn đấy
a) Ta có: \(x^4y^4-z^4\)
\(=\left(x^2y^2-z^2\right)\left(x^2y^2+z^2\right)\)
\(=\left(xy-z\right)\left(xy+z\right)\left(x^2y^2+z^2\right)\)
b) Ta có: \(\left(x+y+z\right)^2-4z^2\)
\(=\left(x+y+z-2z\right)\left(x+y+z+2z\right)\)
\(=\left(x+y-z\right)\left(x+y+3z\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
16 - ( a-b)2
\(=\left(4-a+b\right)\left(4+a-b\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
Tìm x:
x2- 10x = -25
\(\Leftrightarrow x^2-10x+25=0\\ \Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
\(x^2-10x+25=0\)
\(x^2-10x+5^2=0\)
\(\left(x-5\right)^2=0\)
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
x3 - 6x2y + 12xy2 - 8y3
\(=\left(x-2y\right)^3\)
\(x^3-6x^2y+12xy^2-8y^3=\left(x-2\right)^3\)