Những câu hỏi liên quan
HN
Xem chi tiết
TM
Xem chi tiết
TM
9 tháng 8 2021 lúc 10:16

giúp mình với 

 

Bình luận (0)
H24
Xem chi tiết
NV
Xem chi tiết
KS
13 tháng 8 2016 lúc 11:47

GIẢI: 
a) Chứng minh tam giác CKH đồng dạng tam giác BCA 
AKC^ + ABC^ = 2v => AKCH nội tiếp 
=> CHK^ = CAB^ (1) ( cùng chắn cung CK) 
CKH^ = CAH^ (2) ( cùng chắn cung CH) 
CAH^ = ABC^ (3) ( so le trong) 
(2) và (3) => CKH^ = ACB^ (4) 
(1) và (4) => ΔCKH ~ ΔBCA (g.g) 

b) Chứng minh HK=AC.sinBAD 
ΔCKH ~ ΔBCA =>HK/AC = CH/AB = CH/CD = sin(CDH^) = sin(BAD^) ( đồng vị) 
=> HK = AC.sin(BAD^) 

c) Tính diện tích tứ giác AKCH nếu góc BAD = 60 độ, AB=4cm, AD=5cm 
AB = CD = 4 
CDH^ = BAD^ = 60* 
=> CH = 4√3/2 = 2√3 ( đường cao tam giác đều cạnh = 4) 
DH = CD/2 = 4/2 = 2 
=> AH = AD + DH = 5 + 2 = 7 
AD = BC = 5 
CBK^ = BAD^ = 60* 
=> CK = 5.√3/2 
BK = BC/2 = 5/2 
=> AK = AB + BK = 4 + 5/2 = 13/2 
S(AKCH) = S(ACK) + S(ACH) = AK.CK/2 + AH.CH/2 
= (13/2).( 5.√3/2)/2 + 7.(2√3)/2 = 732√3/8 

chúc bạn học tốt

Bình luận (0)
PT
Xem chi tiết
PQ
27 tháng 3 2021 lúc 8:45

Gọi O là giao của hai đường chéo

Ta có: \(\overrightarrow{AB}=\overrightarrow{AO}+\overrightarrow{OB}\)\(\overrightarrow{AD}=\overrightarrow{AO}+\overrightarrow{OD}=\overrightarrow{AO}-\overrightarrow{OB}\)

Suy ra : \(\overrightarrow{AB}.\overrightarrow{AD}=AO^2-OB^2=3^2-4^2=-7\)

\(\Leftrightarrow AB^2.AD^2=49\)\(\Leftrightarrow AD^2=\dfrac{49}{16}\Leftrightarrow AD=\dfrac{7}{4}\)

 

Bình luận (0)
PB
Xem chi tiết
CT
8 tháng 10 2018 lúc 3:18

Vì ABCD là hình bình hành nên ∠ ABC =  ∠ ADC.

Mặt khác, BE và DF lần lượt là phân giác của các góc B và D, do đó suy ra  ∠ ADF =  ∠ CBE

Mặt khác, ta có: AD = CB = b;

DAF = BCE (so le trong)

Suy ra: △ ADF =  △ CBE (g.c.g)

⇒ AF = CE

Đặt AF = CE = x

Theo tính chất của đường phân giác BE trong tam giác ABC, ta có:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Thay số, tính trên máy tính điện tử cầm tay ta được:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Bình luận (0)
TN
Xem chi tiết
GH
Xem chi tiết
N1
13 tháng 3 2022 lúc 20:48

 

Dựng BG ⊥ AC.

Xét ∆ BGA và ∆ CEA, ta có:

ˆBGA=ˆCEA=90∘BGA^=CEA^=90∘

ˆAA^ chung

Suy ra: ∆ BGA đồng dạng ∆ CEA (g.g)

Suy ra: ABAC=AGAEABAC=AGAE

Suy ra: AB.AE = AC.AG   (1)

Xét ∆ BGC và ∆ CFA, ta có:

ˆBGC=ˆCFA=90∘;BGC^=CFA^=90∘

ˆBCG=ˆCAF;BCG^=CAF^  (so le trong vì AD // BC)

Suy ra: ∆ BGC đồng dạng ∆ CFA (g.g)

Suy ra: AFCG=ACBC⇒BC.AF=AC.CGAFCG=ACBC⇒BC.AF=AC.CG

Mà BC = AD (tính chất hình bình hành )

Suy ra: AD.AF = AC.CG            (2)

Cộng từng vế của đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

⇒AB.AE+AD.AF=AC(AG+CG)⇒AB.AE+AD.AF=AC(AG+CG)

Mà AG+CG=ACAG+CG=AC  nên AB.AE+AD.AF=AC2

Bình luận (0)
N1
13 tháng 3 2022 lúc 20:49

có gì sai mong bạn sửa lại nha

 

Bình luận (0)
AX
Xem chi tiết
F6
14 tháng 8 2017 lúc 16:46

Bai 1: 

Ta co: BD la duong cheo vua la duong phan giac ( T/c cua duong cheo trong hinh thoi )

Thay co goc B = 120 cm, suy ra goc ABC = 60 do

Tam giac ABC la tam giac deu

AB = AD = BD = 5

Bình luận (0)