Ôn tập cuối năm phần hình học

GH

Bài 2 : Cho hình bình hành ABCD, có đường chéo lớn AC. Từ C kẻ CE vuông góc AB, CF vuông góc AD ; BH vuông góc AC. Chứng minh : a) AB.AE = AH.AC b) BC.AF = AC.HC c) AB.AE + AD.AF = AC2 . d) Cho biết CE = 16cm, CF = 20cm, chu vi ABCD = 108cm. Tính diện tích ABCD

Giúp mk vs khó quá

 

N1
13 tháng 3 2022 lúc 20:48

 

Dựng BG ⊥ AC.

Xét ∆ BGA và ∆ CEA, ta có:

ˆBGA=ˆCEA=90∘BGA^=CEA^=90∘

ˆAA^ chung

Suy ra: ∆ BGA đồng dạng ∆ CEA (g.g)

Suy ra: ABAC=AGAEABAC=AGAE

Suy ra: AB.AE = AC.AG   (1)

Xét ∆ BGC và ∆ CFA, ta có:

ˆBGC=ˆCFA=90∘;BGC^=CFA^=90∘

ˆBCG=ˆCAF;BCG^=CAF^  (so le trong vì AD // BC)

Suy ra: ∆ BGC đồng dạng ∆ CFA (g.g)

Suy ra: AFCG=ACBC⇒BC.AF=AC.CGAFCG=ACBC⇒BC.AF=AC.CG

Mà BC = AD (tính chất hình bình hành )

Suy ra: AD.AF = AC.CG            (2)

Cộng từng vế của đẳng thức (1) và (2) ta có:

AB.AE + AD.AF = AC.AG + AC.CG

⇒AB.AE+AD.AF=AC(AG+CG)⇒AB.AE+AD.AF=AC(AG+CG)

Mà AG+CG=ACAG+CG=AC  nên AB.AE+AD.AF=AC2

Bình luận (0)
N1
13 tháng 3 2022 lúc 20:49

có gì sai mong bạn sửa lại nha

 

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
TU
Xem chi tiết
HT
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
TK
Xem chi tiết