Những câu hỏi liên quan
NM
Xem chi tiết
VX
3 tháng 6 2021 lúc 2:05

\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)

Bình phương 2 vế, ta có:

\(x+y+3+1=x+y\)

\(x+y+3+1-x-y=0\)

\(4=0\) (vô lý)

Vậy phương trình vô nghiệm

-Chúc bạn học tốt-

Bình luận (3)
DK
3 tháng 6 2021 lúc 8:49

(x,y) hoán vị của (4,9) . có vẻ hoạt động

Bình luận (0)
H24
Xem chi tiết
NL
29 tháng 3 2021 lúc 22:00

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

Bình luận (0)
HT
Xem chi tiết
HC
Xem chi tiết
HM
Xem chi tiết
TL
9 tháng 4 2015 lúc 8:36

từ đề bài => 0 < x; y < 2012  và

\(\sqrt{y}=\sqrt{2012}-\sqrt{x}\Rightarrow y=\left(\sqrt{2012}-\sqrt{x}\right)^2=2012+x-2\sqrt{2012}\sqrt{x}=2012+x-4.\sqrt{503.x}\)Vì y nguyên nên \(\sqrt{503.x}\) nguyên => x = 503.k2 Mà 0<  x < 2012 =>0<  503. k2 < 2012 => 0< k2 < 4 => k2 = 1

=> x = 503 => y = 2012 + 503 - 4.503 = 503 

Vậy x = y = 503

Bình luận (0)
H24
Xem chi tiết
DH
Xem chi tiết
HN
8 tháng 1 2019 lúc 23:18

\(ĐKXĐ:x;y\ge\frac{1}{2}\)

Chia cả 2 vế của pt cho x ; y ta được

\(\frac{\sqrt{2y-1}}{y}+\frac{\sqrt{2x-1}}{x}=2\)

Dễ dàng c/m được \(\hept{\begin{cases}\sqrt{2y-1}\le y\\\sqrt{2x-1}\le x\end{cases}\Rightarrow VT\le1+1=2}\)

Dấu "=" xảy ra <=>. x= y = 1

Vậy x = y = 1

Bình luận (0)
H24
9 tháng 1 2019 lúc 8:21

Rất easy! Dùng Cô si ngược đê!

ĐKXĐ: \(x,y\ge\frac{1}{2}\)

Theo Cô si (ngược),ta có:

\(VT=x\sqrt{1\left(2y-1\right)}+y\sqrt{1\left(2x-1\right)}\)

\(VT\le x.\frac{2y-1+1}{2}+y.\frac{2x-1+1}{2}\)

\(=xy+yx=2xy=VP\)

Dấu "=" xảy ra \(\Leftrightarrow2x-1=2y-1=1\Leftrightarrow2x=2y=2\Leftrightarrow x=y=1\)

Bình luận (0)
KV
Xem chi tiết
AH
17 tháng 2 2021 lúc 2:13

Lời giải:

PT $\Leftrightarrow \sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1$

$\Rightarrow x+y+3=(\sqrt{x}+\sqrt{y}-1)^2$

$\Leftrightarrow x+y+3=x+y+1-2(\sqrt{x}+\sqrt{y}-\sqrt{xy})$

$\Leftrightarrow 1+\sqrt{x}+\sqrt{y}-\sqrt{xy}=0(*)$

$\Rightarrow (\sqrt{x}+\sqrt{y})^2=(\sqrt{xy}-1)^2$

$\Rightarrow 4\sqrt{xy}=xy+1-x-y\in\mathbb{Z}$

Ta có nhận xét sau: Với số không âm $a$ bất kỳ thì khi $\sqrt{a}$ là số hữu tỉ thì $\sqrt{a}$ cũng là số chính phương.

Do đó: $\sqrt{xy}$ là scp

Kết hợp $(*)$ suy ra $\sqrt{x}+\sqrt{y}\in\mathbb{Z}$

$\sqrt{x}(\sqrt{x}+\sqrt{y})=x+\sqrt{xy}\in\mathbb{Z}$

$\Rightarrow \sqrt{x}=\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\in\mathbb{Q}$

$\Rightarrow \sqrt{x}$ là scp. Kéo theo $\sqrt{y}$ là scp.

Từ $(*)$ ta cũng có $(\sqrt{x}-1)(1-\sqrt{y})=-2$

Đến đây thì với $\sqrt{x}, \sqrt{y}\in\mathbb{Z}$ ta có pt tích khá đơn giản.

 

Bình luận (0)
MH
Xem chi tiết
DH
4 tháng 1 2022 lúc 20:12

Tham khảo nha e

undefinedundefined

Bình luận (1)
H24
4 tháng 1 2022 lúc 20:15

đăng câu hỏi kiểu j mà đặng đc lên như thế này đấy

 

Bình luận (0)
NM
4 tháng 1 2022 lúc 20:24

1.

Đặt \(\sqrt[3]{2+\sqrt{b}}=x;\sqrt[3]{2-\sqrt{b}}=y\)

Do \(x>0\Rightarrow x^2+y^2-xy=\dfrac{3}{4}x^2+\left(\dfrac{1}{2}x-y\right)^2>0\)

\(PT\Leftrightarrow\dfrac{x^3+y^3}{a}+xy=x^2+y^2\Leftrightarrow\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{a}=x^2-xy+y^2\\ \Leftrightarrow\left(x^2-xy+y^2\right)\left(\dfrac{x+y}{a}-1\right)=0\\ \Leftrightarrow\dfrac{x+y}{a}=1\\ \Leftrightarrow\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}=a\left(1\right)\\ \Leftrightarrow\left(\sqrt[3]{2+\sqrt{b}}+\sqrt[3]{2-\sqrt{b}}\right)^3=a^3\\ \Leftrightarrow4+3a\sqrt[3]{4-b}=a^3\left(2\right)\\ \Rightarrow4-b=\left(\dfrac{a^3-4}{3a}\right)^3\)

Mặt khác \(b\in \mathbb{Z^+}\)

\(\Rightarrow\left(a^3-4\right)⋮3a\Rightarrow\left(a^3-4\right)⋮a\\ \Rightarrow4⋮a\Rightarrow a\in\left\{1;2;4\right\}\)

Với \(a=1\Rightarrow4-b=1\Rightarrow b=5\)

Với \(a=2;a=4\Rightarrow b\notin \mathbb{Z}\)

Vậy \(\left(a;b\right)=\left(1;5\right)\)

Bình luận (0)