Những câu hỏi liên quan
PB
Xem chi tiết
CT
24 tháng 9 2017 lúc 11:51

Vì a, b, c có vai trũ như nhau nên giả sử  a   ≤ b   ≤ c  khi đó

 ( Vì a là số nguyên tố )

Với a = 2 ta có

-    Nếu b = 2 thì 4c < 2 + 4c  thoả món với c là nguyên tố bất kỡ

-  Nếu b = 3 thì 6c < 6b + 5c suy ra c < 6 vậy c = 3 hoặc c = 5

Vậy các cạp số (a, b, c) càn Tìm là (2, 2, p) ; (2, 3, 3 ) ; (2, 3, 5 ) và các hoán vị vủa chúng , với p là số nguyên tố .

Bình luận (0)
NK
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
TK
10 tháng 1 2022 lúc 22:29

câu 2: 

Với p=2→2p+1=5p=2→2p+1=5 không là lập phương 11 số tự nhiên

→p=2→p=2 loại

→p>2→(p,2)=1→p>2→(p,2)=1

Đặt 2p+1=(2k+1)3,k∈N2p+1=(2k+1)3,k∈N vì 2p+12p+1 lẻ

→2p=(2k+1)3−1→2p=(2k+1)3−1

→2p=(2k+1−1)((2k+1)2+(2k+1)+1)→2p=(2k+1−1)((2k+1)2+(2k+1)+1)

→2p=2k(4k2+6k+3)→2p=2k(4k2+6k+3)

→p=k(4k2+6k+3)→p=k(4k2+6k+3)

Vì pp là số nguyên tố, 4k2+6k+3>k4k2+6k+3>k

→k=1→k=1 và 4k2+6k+34k2+6k+3 là số nguyên tố

→4k2+6k+3=13→4k2+6k+3=13 (Khi k=1k=1) là số nguyên tố

→k=1→k=1 chọn

→2p+1=27→2p+1=27

→p=13

câu 3: p−qp−q chia hết cho 2 suy ra q=k.(2k−1)(2k+1)q=k.(2k−1)(2k+1)
Do vậy qq thành tích 3 số nguyên lớn hơn 1 suy ra vô lý vì nó là nguyên tố.
Suy ra q=3,p=5q=3,p=5 Thỏa mãn
TH2: p−q−1=2tp−q−1=2t nên t=0t=0 vì nếu không thì p−q−1=0↔p−q=1↔p=3,q=2p−q−1=0↔p−q=1↔p=3,q=2 thay vào đề loại.
TH3: q=(2m−1)(2m−2)mq=(2m−1)(2m−2)m
Nếu qq thành tích 3 số nguyên lớn hơn 1 loại
Suy ra p=5,q=3p=5,q=3

tick nha
Bình luận (1)
TK
11 tháng 1 2022 lúc 7:07

em hok cop nha

nếu thấy nghi thì tại máy tính của em nó bị lỗi đấy ạ

Bình luận (0)
H24
Xem chi tiết
NL
12 tháng 1 2022 lúc 22:29

1.

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

Do vế phải chia hết cho 3  \(\Rightarrow\) vế trái chia hết cho 3

\(\Rightarrow a+b+c⋮3\Rightarrow\left(a+b+c\right)^3⋮27\)

\(a+b+c⋮3\Rightarrow3\left(a+b+c\right)⋮9\)

\(\Rightarrow\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)-3\left(a+b+c\right)\left(ab+bc+ca\right)⋮9\)

\(\Rightarrow3abc⋮9\Rightarrow abc⋮3\)

2.

Đặt \(2p+1=n^3\Rightarrow2p=n^3-1=\left(n-1\right)\left(n^2+n+1\right)\) (hiển nhiên n>1)

Do \(n^2+n+1=n\left(n+1\right)+1\) luôn lẻ \(\Rightarrow n-1\) chẵn \(\Rightarrow n=2k+1\)

\(\Rightarrow2p=\left(2k+1-1\right)\left(n^2+n+1\right)=2k\left(n^2+n+1\right)\)

\(\Rightarrow p=k\left(n^2+n+1\right)\Rightarrow k=1\Rightarrow n=3\)

\(\Rightarrow p=13\)

Bình luận (0)
LM
12 tháng 1 2022 lúc 22:32

Tham khảo:

2, Với \(p=2->2p+1=5\) không là lập phương 1 số tự nhiên

\(->p=2\) loại

\(-> p>2->(p,2)=1\)

Đặt \(2p+1=(2k+1)^3, k∈ N,\)vì \(2p+1\) lẻ

\(->2p=(2k+1)^3-1\)

\(-> 2p=(2k+1-1)[(2k+1)^2+(2k+1)+1]\)

\(->2p=2k(4k^2+6k+3)\)

\(->p=k(4k^2+6k+3)\)

Vì \(p\)  là số nguyên tố, \(4k^2+6k+3>k\)

\(->k=1\) và \(4k^2+6k+3\) là số nguyên tố.

\(->4k^2+6k+3=13(\) khi \(k=1)\) là số nguyên tố

\(->k=1\) (chọn)

\(-> 2p+1=27\)

\(->p=13\)

Bình luận (0)
NL
12 tháng 1 2022 lúc 22:39

3.

Do \(p+q>0\Rightarrow\left(p-q\right)^3>0\Rightarrow p>q\)

Nếu \(q=2\Rightarrow\left(p-2\right)^3=p+2\Rightarrow p^3-6p^2+11p-10=0\) ko có nghiệm nguyên (loại)

\(\Rightarrow q>2\Rightarrow q\) lẻ \(\Rightarrow p;q\) cùng lẻ \(\Rightarrow p-q\) chẵn

\(\Rightarrow p-q=2k\)

Ta có:

\(\left(p-q\right)^3=p+q\Rightarrow\left(p-q\right)^3-\left(p-q\right)=2q\)

\(\Rightarrow\left(p-q\right)\left[\left(p-q\right)^2-1\right]=2q\)

\(\Rightarrow\left(p-q\right)\left(p-q-1\right)\left(p-q+1\right)=2q\) 

\(\Rightarrow2k\left(p-q-1\right)\left(p-q+1\right)=2q\)

\(\Rightarrow q=k\left(p-q-1\right)\left(p-q+1\right)\)

Do q có 3 ước, mà \(p-q+1>p-q-1\)

\(\Rightarrow q\) là SNT khi \(k=p-q-1=1\)

\(\Rightarrow p-q=2k=2\) (1)

\(\Rightarrow p+q=\left(p-q\right)^3=2^3=8\) (2)

(1);(2) \(\Rightarrow\left(p;q\right)=\left(5;3\right)\)

Bình luận (0)
BM
Xem chi tiết

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

Bình luận (0)
NT
Xem chi tiết
NT
3 tháng 2 2017 lúc 16:02

ai làm được trước mình tích nha

Bình luận (0)
DU
3 tháng 2 2017 lúc 16:08

Cái này phải có 1 Điều kiện gì đó chứ bạn . Nếu không là 1 đống đấy 
VD : a = 1 ; b = 1 ; c = 1 
=> 1.1.1 < 1.1 + 1.1 + 1.1 
<=> 1 < 3 ( Chọn ) 
a = 1 ; b = 2 ; c = 3 
=> 1.2.3 < 2.3 + 1.2 + 1.3 
<=> 6 < 11 (chọn )

Bình luận (0)
DU
3 tháng 2 2017 lúc 16:10

tóm lại có 6 bộ (2;3;5);(2;5;3);(3;2;5);(3;5;2);(5;2;3);(5;3;2)

Bình luận (0)
NT
Xem chi tiết
LQ
Xem chi tiết
LQ
16 tháng 9 2023 lúc 12:17

nam moooooooooooooooooooooooooooooooo

 

Bình luận (0)
NN
Xem chi tiết

Cách 1 : a4 + b4≥ a3.b + a.b3 
Khi và chỉ khi a4 + b4 - a3.b - a.b3 ≥ 0 
Khi và chỉ khi a3 (a - b) - b3 (a - b) ≥ 0 
Khi và chỉ khi (a - b)(a3 - b3) ≥ 0 khi và chỉ khi (a - b)(a - b)(a2 + ab + b2) ≥ 0 
Khi và chỉ khi (a - b)2[(a + b/2)2 + 3.b3/4] ≥ 0 (hiển nhiên đúng với mọi a,b) 
Cách 2 : Ta có[ a2 - b2]2 ≥ 0 
=> a4 - 2.a2.b2 + b4 ≥ 0 
=> a4 + b4 ≥ 2.a2.b2 
=> a4 + b4 + a4 + b4 ≥ a4 + b4 + 2.a2.b2 
=> 2( a4 + b4) &ge ; ( a2 + b2)2 (1) 
Mặt khác (a - b)2≥ 0 
=> a2 - 2ab + b2 ≥ 0 
=> a2 + b2≥2ab 
=> (a2 + b2)( a2 + b2)≥2ab (a2 + b2) 
=> (a2 + b2)2 ≥2ab (a2 + b2) (2) 
Từ (1) và (2) => 2( a4 + b4 ) ≥ 2ab (a2 + b2) 
=> ( a4 + b4 )≥ a3.b + a.b3 
Cách 3 : 
( a4 + b4 ) -( a3.b + a.b3) = 1/2 (2 a4 + 2 b4 - 2 a3.b -2 a.b3) 
= 1/2 [(a4 - 2 a3.b + 

Bình luận (0)