2x^2 - 12x + 20 > 0 với mọi giá trị của x
các bạn giúp mình nhà :D
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm giá trị nhỏ nhất của biểu thức:
A= x^2-x
Các bạn giúp tớ với ạ.
\(A=x^2-x=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(A_{min}=-\dfrac{1}{4}\)
A= x^2-x
A= (x-1/2)^2-1/4
ta thấy (x-1/2)^2\(\ge\)0
=>(x-1/2)^2-1/4\(\ge\)-1/4
hay A\(\ge\)-1/4
vậy \(A_{min}\)=-1/4<=>x=1/2
Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) 1/4 x -x² +2 b) 3x + 2x² +1 c) 9x² -12x + 5 d) ( x+2)² +(x-2)²
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
(x-2/5).(x+2/7)>0
( 2x-1/2).(3x-1/3)<0
x+3/2 phần x-2/3 <0
Tìm x
Các bạn giúp mk nha mk cần gấp
a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)
chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc giá trị của biến :
a) (2x+1)^3+(2x-1)^3-16x^3-12x+9
b) (2x+1)^3-(2x-1)^3-24x^2
các bạn giúp mình vs nhá
chứng minh rằng x^4+2x^3-2x^2-10x+20 >0 với mọi giá trị của x
= (x2-x+1)(x2+3x+10)+10 = P
x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0
x2+3x+10=(x+\(\frac{3}{2}\))2+\(\frac{31}{4}\)>0
vây P>0
Chứng minh rằng x^4 + 2x^3 - 2x^2 - 10x + 20 > 0 với mọi giá trị của x
P=x+1/3x-x^2(3+x/3-x-3-x/3+x-12x^2/x^2-9
a) rút gọn P
b/tính giá trị của P khi |2x-1|=5
c) tính giá trị của x để P<0
làm ơn giúp mình nhanh với
a: \(A=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{-\left(x+3\right)}{x-3}+\dfrac{x-3}{x+3}-\dfrac{12x^2}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{-x^2-6x-9+x^2-6x+9-12x^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-\left(x+1\right)}{x\left(x-3\right)}\cdot\dfrac{\left(x-3\right)\left(x+3\right)}{-12x^2-12x}\)
\(=\dfrac{-\left(x+1\right)\cdot\left(x+3\right)}{-12x^2\left(x+1\right)}=\dfrac{x+3}{12x^2}\)
b: Ta có: |2x-1|=5
=>2x-1=5 hoặc 2x-1=-5
=>x=-2
Thay x=-2 vào A, ta được:
\(A=\dfrac{-2+3}{12\cdot\left(-2\right)^2}=\dfrac{1}{48}\)
c: Để \(A=\dfrac{2x+1}{x^2}\) thì \(\dfrac{x+3}{12x^2}=\dfrac{2x+1}{x^2}\)
=>x+3=24x+12
=>24x+12=x+3
=>23x=-9
hay x=-9/23
d: Để A<0 thì x+3<0
hay x<-3
Tính giá trị của biểu thức x^4 - 12x^3 -47x^2 + 29x =14 tại x=15
Mọi người giúp mình với nha! Thank you so much!
thay x= 15 vào biểu thức r bấm máy thuj
không được làm như vây đâu bạn ạ. đây là một dạng toán tính nhanh, triệt tiêu dần dần chứ ko phải ngồi bấm máy tính. đi thi học sinh giỏi thì ai cho mang máy tính vào thi
Chứng minh rằng các biểu thức sau luôn có giá trị dương với mọi giá trị của biến
x^2-8x+20
4x^2-12x+11
x^2-x+1
x^2-2x+y^2+4y+6
x^2-8x+20=(x^2-8x+16)+4
=(x-4)^2+4>0(vì (x-4)^2>=0)
4x^2-12x+11=4x^2-12x+9+2
=(2x-3)^2+2>0
x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>0
x^2-2x+y^2+4y+6
=x^2-2x+1+y^2+4y+4+1
=(x-1)^2+(y+2)^2+1>0
a: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(4x^2-12x+11\)
\(=4x^2-12x+9+2\)
\(=\left(2x-3\right)^2+2>0\forall x\)
c: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d: Ta có: \(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)