Những câu hỏi liên quan
LD
Xem chi tiết
TA
22 tháng 6 2017 lúc 16:51

Với x, y thực dương áp dụng BĐT Cauchy ta có:

\(P=\frac{16\sqrt{xy}}{x+y}+\frac{x^2+y^2}{xy}\)

\(=\frac{16\sqrt{xy}}{x+y}+\frac{\left(x+y\right)^2-2xy}{xy}\)

\(=\frac{16\sqrt{xy}}{x+y}+\left(\frac{\left(x+y\right)^2}{xy}+4\right)-6\)

\(\ge\frac{16\sqrt{xy}}{x+y}+2\sqrt{\frac{4\left(x+y\right)^2}{xy}}-6\)

\(=\frac{16\sqrt{xy}}{x+y}+\frac{4\left(x+y\right)}{\sqrt{xy}}-6\)

\(\ge2\sqrt{\frac{16\sqrt{xy}}{x+y}.\frac{4\left(x+y\right)}{xy}}-6=2\sqrt{16.4}-6=10\)

Vậy Pmin = 10 tại x = y.

Bình luận (0)
DN
21 tháng 6 2017 lúc 20:11

áp dụng bđt cauchy ->x+y\(\supseteq\)2\(\sqrt{xy}\)

x2+y2\(\supseteq\)2xy

nên P\(\supseteq\)\(\frac{16\sqrt{xy}}{2\sqrt{xy}}\)+\(\frac{2xy}{xy}\)=8+2=10

dấu = xảy ra\(\Leftrightarrow\)x=y

Bình luận (0)
H24
21 tháng 6 2017 lúc 22:06

Bạn #ductuannguyen SAI. 

Bình luận (0)
LA
Xem chi tiết
DN
22 tháng 9 2018 lúc 20:33

Ta có:

\(P=\frac{18}{x^2+y^2}+\frac{9}{xy}+\frac{4}{xy}=\frac{18}{x^2+y^2}+\frac{18}{2xy}+\frac{4}{xy}\)

\(=18.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{4}{xy}\ge18.\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\frac{4}{\frac{\left(x+y\right)^2}{4}}\)

\(=18.4+4.4=72+16=88\)

Dấu bằng xảy ra: \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
NL
3 tháng 6 2019 lúc 14:01

\(A=\sqrt{\left(\frac{x}{y}+\frac{y}{x}\right)^2}+\frac{\sqrt{xy}}{x+y}=\frac{x}{y}+\frac{y}{x}+\frac{\sqrt{xy}}{x+y}=\frac{x^2+y^2}{xy}+\frac{\sqrt{xy}}{x+y}\ge\frac{\left(x+y\right)^2}{2xy}+\frac{\sqrt{xy}}{x+y}\)

\(A\ge\frac{\left(x+y\right)^2}{16xy}+\frac{\sqrt{xy}}{2\left(x+y\right)}+\frac{\sqrt{xy}}{2\left(x+y\right)}+\frac{7\left(x+y\right)^2}{16xy}\)

\(A\ge3\sqrt[3]{\frac{\left(x+y\right)^2.xy}{16xy.4\left(x+y\right)}}+\frac{7\left(x+y\right)^2}{\frac{16.\left(x+y\right)^2}{4}}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(x=y\)

Bình luận (0)
HN
Xem chi tiết
NN
26 tháng 7 2019 lúc 16:15

vừa lên lớp 8 đã bị hack não rồi k bt có học đc k đây

Bình luận (0)
BV
Xem chi tiết
YN
5 tháng 1 2021 lúc 23:17
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
IU
Xem chi tiết
IU
20 tháng 5 2017 lúc 20:13

Cho các số thực dương x,y nha

Bình luận (0)
LL
20 tháng 5 2017 lúc 20:30

bên h h có đấy

Bình luận (0)
IU
21 tháng 5 2017 lúc 10:49

chỗ nào z??

Bình luận (0)
LV
Xem chi tiết
KN
11 tháng 10 2020 lúc 10:08

Ta có: \(P=\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}=\frac{1}{\frac{x}{\sqrt{yz}}+2}+\frac{1}{\frac{y}{\sqrt{zx}}+2}+\frac{1}{\frac{z}{\sqrt{xy}}+2}\)

Đặt \(\frac{x}{\sqrt{yz}}=c,\frac{y}{\sqrt{zx}}=t;\frac{z}{\sqrt{xy}}=k\left(c,t,k>0\right)\)thì ctk = 1

Ta cần tìm giá trị lớn nhất của \(P=\frac{1}{c+2}+\frac{1}{t+2}+\frac{1}{k+2}\)với ctk = 1

Dự đoán MaxP = 1 khi c = t = k = 1

Thật vậy: \(P=\frac{kt+2k+2t+4+ct+2c+2t+4+ck+2c+2k+4}{\left(c+2\right)\left(t+2\right)\left(k+2\right)}=\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{ctk+2\left(kt+tc+ck\right)+4\left(c+t+k\right)+8}\le\frac{\left(kt+tc+ck\right)+4\left(c+t+k\right)+12}{1+\left(kt+tc+ck\right)+3\sqrt[3]{\left(ctk\right)^2}+4\left(c+t+k\right)+8}=1\)Đẳng thức xảy ra khi x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
EC
11 tháng 10 2020 lúc 10:13

Ta có: \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=\frac{1}{2}\left(1-\frac{x}{x+2\sqrt{yz}}\right)\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)=\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)\)(bđt cosi) (1)

CMTT: \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)\)(2)

\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)(3)

Từ (1), (2) và (3) cộng vế theo vế ta có:

\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\le\frac{1}{2}\left(\frac{y+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+z}{x+y+z}\right)+\frac{1}{2}\left(\frac{x+y}{x+y+z}\right)\)

=> P \(\le\frac{1}{2}\left(\frac{y+z+x+z+x+y}{x+y+z}\right)=\frac{1}{2}\cdot\frac{2\left(x+y+z\right)}{x+y+z}=1\)

Dấu "=" xảy ra <=> x = y = z

Vậy MaxP = 1 <=> x = y = z

Bình luận (0)
 Khách vãng lai đã xóa
TT
11 tháng 10 2020 lúc 10:19

một bài khá hay :)

Ta có \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}=1-\frac{x}{x+2\sqrt{yz}}\le1-\frac{x}{x+y+z}\left(1\right)\)

 Tương tự \(\frac{\sqrt{xz}}{y+2\sqrt{xz}}=1-\frac{y}{y+2\sqrt{xz}}\le1-\frac{y}{x+y+z}\left(2\right)\)

\(\frac{\sqrt{xy}}{z+2\sqrt{xy}}=1-\frac{z}{z+2\sqrt{xy}}\le1-\frac{z}{x+y+z}\left(3\right)\)

Cộng (1);(2);(3)

\(2P\le3-\frac{x+y+z}{x+y+z}=2\Rightarrow P\le1\)

Vậy \(minP=1\)Khi và chỉ khi \(x=y=z\)

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
TL
5 tháng 5 2020 lúc 20:41

Đặt S=\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+2xy+y^2}{xy}=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{x^2+y^2}{xy}+2\)

Áp dụng BĐT Cosi ta có: \(x+y\ge2\sqrt{xy}\Leftrightarrow xy< \frac{\left(x+y\right)^2}{4}\)

Do đó \(S\ge\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}+2\ge2\sqrt{\frac{\left(x+y\right)^2}{x^2+y^2}\cdot\frac{4\left(x^2+y^2\right)}{\left(x+y\right)^2}}+2=6\)

Dấu "=" xảy ra <=> x=y

Vậy MinS=6 đạt được khi x=y

Bình luận (0)
 Khách vãng lai đã xóa
NC
5 tháng 5 2020 lúc 20:37

Ta có: 

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)

\(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(\ge\left(x+y\right)^2.\frac{4}{\left(x+y\right)^2}+\frac{4xy}{2xy}=6\)

Dấu "=" xảy ra <=> x = y 

Vậy min \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)= 6 đạt tại x = y.

Bình luận (0)
 Khách vãng lai đã xóa