Cho A = 4 + 4^2 + 4^3 +.......+ 4^23 + 4^24. CMR:
A chia hết cho 20 ; 21 ; 420
Cho A=4+42+...+424
CMR:A chia hết cho 20
A chia hết cho 21
A=4+42+...+424
=(4+42)+...+(423+424)
=4.(4+42)+...+423.(4+42)
=4.20+...+423.20
=20.(4+...+423) chia het cho 20
A=4+42+...+424
=(4+42+43)+...+(422+423+424)
=4.(1+4+42)+...+422.(1+4+42)
=4.21+...+422.21
=21.(4+...+422) chia het cho 21
cảm ơn bạn rất nhìu
lúc đầu mk cứ tưởng phải gấp A lên cơ
nên tính mãi ko ra
Cho `A = 4 + 4^2 + 4^3 +...+ 4^23 + 4^24`
Chứng minh A chia hết 20; A chia hết 21; A chia hết 420
Lời giải:
$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+...+4^{22})$
$=20(1+4^2+...+4^{22})\vdots 20$
----------------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+...+4^{22})$
$=21(4+4^4+....+4^{22})\vdots 21$
----------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
Cho A = 4 + 4^2 + 4^3 + ... + 4^23 + 4^24
CMR : A chia hết cho 20 , A chia hết cho 21
A = \(4+4^2+4^3+.....+4^{23}+4^{24}\)
= \(4\left(1+4+4^2\right)+.....+4^{22}+\left(1+4+4^2\right)\)
= \(4.21+.....+4^{22}.21\)
= \(21\left(4+...+4^{22}\right)⋮21\)
Vậy A chia hết cho 21
Ai k mik mik k lại nha
Lâu r chị k nhớ lắm nhé
CM A chia hết cho 20
A = 4(1+4+4^2+...+4^23) chia hết cho 4 (1)
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
= 4(1+4) + 4^3(1+4) +...+4^23(1+4)
= (1+4)(4+4^3+4^5+...+4^23)
=5.(4+4^3+4^5+...+4^23) chia hết cho 5 (2)
Mà UCLN(4,5)=1 (3)
Vậy A chia hết cho 4.5 =20
CM A chia hết cho 21
A = (4+4^2+4^3)+(4^4+4^5+4^6)+...+(4^22+4^23+4^24)
= 4(1+4+4^2) +4^4(1+4+4^2)+...+4^22(1+4+4^2)
= (1+4+4^2)(4+4^4+...+4^22)
= 21(4+4^4+...+4^22) chia hết cho 21
Vậy A chia hết cho 24.
Chúc e học giỏi!
CHia hết cho 21 thì bn làm giống bnMinh Hiền nha, còn chia hết cho 20 thì
A = 4 + 4^2 + 4^3 + ... + 4^23 + 4^24
A= (4+4^2)+(4^3+4^4)+...+ ( 4^23+4^24)
A= 20 + 4^2(4+4^2)+...+4^22(4+4^2)
A= 20 + 4^2.20 + ... + 4^22.20
A= 20( 1+4^2 +....+4^22) chia hết cho 20
=> A chia hết cho 20
Cho A= 4+4^2+4^3+...+4^23+4^24
Chứng minh rằng A chia hết cho 20, chia hết cho 21, chia hết cho 420
giup mk nhé
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
Cho A =4 + 42 + 43 +....+ 423 + 424
CMR: a chia hết cho 20: a chia hết cho 21: a chia hết cho 420.
1. .\(4+4^2+4^3+...+4^{23}+4^{24}\)
CMR : A chia hết cho 20 ; A chia hết cho 21 ; A chia hết 420
4 + 42 + 43 + 44 + ... + 423 + 424
= 4x(1+4) + 42x4x(1+4) + ... + 422x4x(1+4)
= 20 + 42x20 + ... + 422x20
= 20x(1+42+...+422)
Suy ra: A chia hết cho 20
4 + 42 + 43 + 44 + ... + 423 + 424
= (4 + 42 + 43) + ... + (422 + 423 + 424)
= 4x(1+4+42) + ... + 422x(1+4+42)
= 4x21 + ... + 422x21
= (4+...+422)x21
Suy ra: A chia hết cho 21
Vì A chia hết cho 21 , A chia hết cho 20
Suy ra: A chia hết cho 21x20=420
Cho A = 4 + 42 + 43 +...+ 423 + 424. Chứng minh rằng :
A chia hết cho 20 ; A chia hết cho 21 ; A chia hết cho 420
\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)
\(A=20.1+20.2^4+.......+20.2^{24}\)
\(A=20.\left(1+2^4+..........+2^{24}\right)\)
Vậy A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4.21+4^4.21+......+4^{20}.21\)
\(A=21.\left(1+4^4+......+4^{20}\right)\)
Vậy A chia hết cho 21
\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)
\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)
Vậy A chia hết cho 420
cho a=4+4 mũ 2 +4 mũ 3 + ....+4 mũ 23 +4 mũ 24.chứng minh a chia hết cho 20:21:420?
giúp mình với.
A = 4 + 4² + 4³ + ... + 4²³ + 4²⁴
Số số hạng của A:
24 - 1 + 1 = 24
Do 24 ⋮ 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 2 số hạng như sau:
A = (4 + 4²) + (4³ + 4⁴) + ... + (4²³ + 4²⁴)
= 20 + 4².(4 + 4²) + ... + 4²².(4 + 4²)
= 20 + 4².20 + ... + 4²².20
= 20.(1 + 4² + ... + 4²²) ⋮ 20
Vậy A⋮ 20 (1)
Do 24 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
A = (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4²² + 4²³ + 4²⁴)
= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4²².(1 + 4 + 4²)
= 4.21 + 4⁴.21 + ... + 4²².21
= 21.(4 + 4⁴ + ... + 4²²) ⋮ 21
Vậy A ⋮ 21 (2)
Từ (1) và (2) ⇒ A ⋮ 20 . 21 (do 20 và 21 nguyên tố cùng nhau)
⇒ A ⋮ 420
Vậy A chia hết cho 20; 21; 420
A = (4 + 4²) + (4³ + 4⁴) + ... + (4²³ + 4²⁴)
= 20 + 4².(4 + 4²) + ... + 4²².(4 + 4²)
= 20 + 4².20 + ... + 4²².20
= 20.(1 + 4² + ... + 4²²) ⋮ 20
Vậy A⋮ 20
Cho A= 4+42+43+....+423+424. Chứng Minh : A chia hết cho 20 ; A chia hết cho 21 ; A chia hết cho 420
ta có
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+..+\left(4^{23}+4^{24}\right)\)
\(=20+20\times4^2+..+20\times4^{22}\) thế nên A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+..+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=4\times21+4^4\times21+..+4^{22}\times21\) Thế nên A chia hết cho 21
thế nê A chia hết cho 20x21 =420