Phân tích đa thức sau thành nhân tử:
a, 5x^2 - 18x -18
b, 15x^2 - 34x + 15
1A. Phân tích các đa thức sau thành nhân tử:
a) x3+2x; b) 3x - 6y;
c) 5(x + 3y)- 15x(x + 3y); d) 3(x-y)- 5x(y-x).
1B. Phân tích các đa thức sau thành nhân tử:
a) 4x2 - 6x; b) x3y - 2x2y2 + 5xy;
c) 2x2(x +1) + 4x(x +1); d) 2 x(y - 1) - 2
y(1 - y).
5 5
2A. Phân tích các đa thức sau thành nhân tử: a) 2(x -1)3 - 5(x -1)2 - (x - 1);
b) x(y - x)3 - y(x - y)2 + xy(x - y);
c) xy(x + y)- 2x - 2y;
d) x(x + y)2 - y(x + y)2 + y2 (x - y).
2B. Phân tích đa thức thành nhân tử: a) 4(2-x)2 + xy - 2y;
b) x(x- y)3 - y(y - x)2 - y2(x - y);
c) x2y-xy2 - 3x + 3y;
d) x(x + y)2 - y(x + y) 2 + xy - x 2 .
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
1B:
a: \(4x^2-6x=2x\left(2x-3\right)\)
b: \(x^3y-2x^2y^2+5xy\)
\(=xy\left(x^2-2xy+5\right)\)
Phân tích đa thức thành nhân tử:
a) 12x3+8x2-3x-2
b) 18x3+27x2-2x-3
c) 8x3+4x2-34x+15
e) x3+15x2-34x-12
a) \(12x^3+8x^2-3x-2=4x^2\left(3x+2\right)-\left(3x+2\right)\)
\(=\left(3x+2\right)\left(4x^2-1\right)=\left(3x+2\right)\left(2x-1\right)\left(2x+1\right)\)
b) \(18x^3+27x^2-2x-3=9x^2\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(9x^2-1\right)=\left(2x+3\right)\left(3x-1\right)\left(3x+1\right)\)
c) \(8x^3+4x^2-34x+15=4x^2\left(2x-3\right)+8x\left(2x-3\right)-5\left(2x-3\right)\)
\(=\left(2x-3\right)\left(4x^2+8x-5\right)=\left(2x-3\right)\left(2x-1\right)\left(2x+5\right)\)
phân tích đa thức thành nhân tử : 4(x^2+50+15x)(x^2+18x+72)-3x^2
\(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)-3x^2\)
\(=4\left(x+5\right)\left(x+10\right)\left(x+12\right)\left(x+6\right)-3x^2\)
\(=4\left(x^2+17x+60\right)\left(x^2+16x+60\right)-3x^2\)
\(=4\left(x+60\right)^2+132x\left(x+60\right)+1088x^2-3x^2\)
\(=4\left(x+60\right)^2+132x\left(x+60\right)+1085x^2\)
\(=4\left(x+60\right)^2+62x\left(x+60\right)+70x\left(x+60\right)+1085x^2\)
\(=2\left(x+60\right)\left[2\left(x+60\right)+31x\right]+35x\left[2\left(x+60\right)+31x\right]\)
\(=\left(33x+120\right)\left(2x+120+35x\right)\)
\(=3\left(11x+40\right)\left(37x+120\right)\)
Phân tích đa thức thành nhân tử:
a, 5x^2 - 6x + 1
\(5x^2-6x+1=5x^2-5x-x+1=5x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(5x-1\right)\)
phân tích các đa thức sau thành nhân tử:
a)14x^2y-21xy^2+28x^2y^2
b)3x^2-3xy-5x+5y
a) \(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)
b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(3x+5\right)\left(x-y\right)\)
Phân tích đa thức sau thành nhân tử:
a)7x^3y-14x^2y^2+7xy^3
b)3x^2-3xy-5x+5y
c)x^2+7x+12
Vô đây xem: bài 1:phân tích đa thức thành nhân tửa)7x^3y-14x^2y+7xy^3b)3x^2-3xy-5x+5yc)x^2+7x+12giúp mình với - Hoc24
Phân tích đa thức sau thành nhân tử
5x^2 - 18x - 18
phân tích đa thức sau thành nhân tử:
a) x^8 + x^4 -2
b)x^2n + 5x^n - 24, n thuộc N*
c) (x^2 + x)^2 -2(x^2 +x ) - 15
(x^2 + x +1)(x^2 +x +2) -12
a) \(x^8+x^4-2\)
\(=x^8+x^7+x^6+x^5+2x^4+2x^3+2x^2+2x-x^7-x^6-x^5-x^4-2x^3-2x^2-2x-2\)
\(=x\left(x^7+x^6+x^5+x^4+2x^3+2x^2+2x+2\right)-\left(x^7+x^6+x^5+x^4+2x^3+2x^2+2x+2\right)\)
\(=\left(x-1\right)\left(x^7+x^6+x^5+x^4+2x^3+2x^2+2x+2\right)\)
\(=\left(x-1\right)\left[x^4\left(x^3+x^2+x+1\right)+2\left(x^3+x^2+x+1\right)\right]\)
\(=\left(x-1\right)\left(x^4+2\right)\left(x^3+x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^2+2\right)\left[x^2\left(x+1\right)+\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x^2+1\right)\left(x^2+1\right)\left(x+1\right)\)
c) \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=x^4+2x^3+x^2-2x^2-2x-15\)
\(=x^4+2x^3-x^2-2x-15\)
\(=x^4+x^3+3x^2+x^3+x^2+3x-5x^2-5x-15\)
\(=x^2\left(x^2+x+3\right)+x\left(x^2+x+3\right)-5\left(x^2+x+3\right)\)
\(=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
d) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=x^4+2x^3+2x^2+x^2+2x+x^2+x+2-12\)
\(=x^4+2x^3+4x^2+3x-10\)
\(=x^4+3x^3+7x^2+10x-x^3-3x^2-7x-10\)
\(=x\left(x^3+3x^2+7x+10\right)-\left(x^3+3x^2+7x+10\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+7x+10\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+5x+10\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+5\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
Phân tích đa thức thành nhân tử
4( x^2 +15x+50)(x^2+18x+72)+x^2
\(4\left(x^2+15x+50\right)\left(x^2+18x+72\right)+x^2\)
\(=4\left(x^2+5x+10x+50\right)\left(x^2+12x+6x+72\right)+x^2\)
\(=4\left(x+5\right)\left(x+10\right)\left(x+6\right)\left(x+12\right)+x^2\)
\(=4\left(x+6\right)\left(x+10\right)\left(x+5\right)\left(x+12\right)+x^2\)
\(=4\left(x^2+16x+60\right)\left(x^2+17x+60\right)+x^2\)
Đặt \(x^2+16x+60=a\)thay vào ta được :
\(4a\left(a+x\right)+x^2\)
\(=4a^2+4ax+x^2\)
\(=\left(2a+x\right)^2\)
\(=\left(2x^2+32x+120+x\right)^2\)
Chết lỡ enter rồi viết gọn nốt đoạn cuối giúp mình nhé :">