Tìm GTLN của biểu thức :
\(\text{A}=\frac{5}{\left(2x-1\right)^2+3}\).
a) Tìm GTNN của biểu thức \(C=\left(x+1\right)^2+\left(y-\frac{1}{3}\right)^2-10\)
b)Tìm GTLN của biểu thức \(D=\frac{5}{\left(2x-1\right)^2+3}\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
a. tìm GTNN của biểu thức \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b. tìm GTLN của biểu thức \(D=\frac{4}{\left(2x-3\right)^2+5}\)
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
b)B có GTLN <=> (2x-3)2+5 có GTNN
Vì (2x-3)2 > 0 với mọi x
=>(2x-3)2+5 > 5 với mọi x
=>GTNN của (2x-3)2+5 là 5
=>D = \(\frac{4}{\left(2x-3\right)^2+5}\) < \(\frac{4}{5}\)
=>GTLN của D là 4/5
Dấu "=" xảy ra <=> (2x-3)2=0<=>x=3/2
Vậy..............
173. a) Tìm GTNN của biểu thức \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b) Tìm GTLN của biểu thức \(D=\frac{4}{\left(2x-3\right)^2+5}\)
Tìm a) GTNN của biểu thức B=|2x+6|+2+2x
b) GTLN của biểu thức C=\(\frac{4-\left|x-y+1\right|}{5+\left|x+y+1\right|}\)
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
1. a) Tìm GTNN của biểu thức C = ( x + 2 )2 + ( y - 1/5)2 - 10
b) Tìm GTLN của biểu thức D =\(\frac{4}{\left(2x-3\right)^2+5}\)
a. (x+2)2 >= 0
(y-1/5)2 >= 0
=> MinC = -10 khi x = -2, y = 1/5
b. (2x-3)2 + 5 >= 5
D đạt max khi mẫu đạt min (Mẫu > 0)
=> MaxD = 4/5 khi x = 3/2
1)Tìm GTNN của biểu thức :
\(A=\left(2x+\frac{1}{3}\right)^4-10\)
B=/2x-2/3/+(y+1/4)^4-1
b) Tìm GTLN của biểu thức sau:
\(C=-\left(\frac{3}{7}x-\frac{4}{15}\right)^6+3\)
D=-/x-3/-/2y+1/+15
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
a)Tìm GTNN của biểu thức A=\(\left(2x+\frac{1}{3}\right)^4-1\)
b) Tìm GTLN của biểu thứcB=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
CẦN GẤP
Tìm GTLN của các biểu thức
A= \(5-3.\left(2x-1\right)^2\)
B= \(\frac{1}{2.\left(x-1\right)^2.3}\)
a) Ta có: ( 2x - 1 ) mũ 2 lớn hơn hoặc bằng 0 với mọi x.
=> 3 . ( 2x - 1 ) lớn hơn hoặc bằng 0 với mọi x
=> 5 - 3 . ( 2x - 1 ) nhỏ hơn hoặc bằng 5 với mọi x
Vậy maxA = 5
b) Ta có: ( x - 1 ) mũ 2 lớn hơn hoặc bằng 0
=> 2 . ( x - 1 ) mũ 2 lớn hơn hoặc bằng 0
=> 2 . ( x - 1 ) mũ 2 . 3 lớn hơn hoặc bằng 0
mà ko có phép chia cho 0 nên 2 . ( x - 1 ) . 3 lớn hơn hoặc bằng 1
=> B nhỏ hơn hoặc bằng 1
Vậy maxB = 1
1
ai tk mk
mk tk lại
mk hứa
yên tâm
thank you
a) Ta có: ( 2x - 1 ) mũ 2 lớn hơn hoặc bằng 0 với mọi x.
=> 3 . ( 2x - 1 ) lớn hơn hoặc bằng 0 với mọi x
=> 5 - 3 . ( 2x - 1 ) nhỏ hơn hoặc bằng 5 với mọi x
Vậy maxA = 5
b) Ta có: ( x - 1 ) mũ 2 lớn hơn hoặc bằng 0
=> 2 . ( x - 1 ) mũ 2 lớn hơn hoặc bằng 0
=> 2 . ( x - 1 ) mũ 2 . 3 lớn hơn hoặc bằng 0
mà ko có phép chia cho 0 nên 2 . ( x - 1 ) . 3 lớn hơn hoặc bằng 1
=> B nhỏ hơn hoặc bằng 1
Vậy maxB = 1