So sánh căn 15 + căn 24 và căn 104 - 1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
so sánh
1 + căn 15 và căn 24
1 + căn 15 ......căn 24
4.872983346...\(\approx\) 4.872 và 4.898979486...\(\approx\)4.898
=> 4.872 < 4.898
=> 1 + căn 15 < căn 24
so sánh
1 + căn 15 và căn 24
Tham khảo nhé ~.~
Ta có :
\(\left(1+\sqrt{15}\right)^2=1+2\sqrt{15}+15=16+2\sqrt{15}\)
\(\left(\sqrt{24}\right)^2=24=16+8=16+2.4=16+2\sqrt{16}\)
Ta thấy \(16+2\sqrt{15}< 16+2\sqrt{16}\) nên \(\left(1+\sqrt{15}\right)^2< \left(\sqrt{24}\right)^2\)
\(\Rightarrow\)\(1+\sqrt{15}< \sqrt{24}\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
Chúc bạn học tốt ~
Bài1: Rút gọn biểu thức A, A= ( căn 2/3 + căn 50/3 - căn 24) . căn 6 B, B= căn 14 - căn 7 / căn 2-1 + căn 15 - căn 5 / căn 3 -1 ) : 1/ căn 7 - căn 5 b, So sánh A và B Bài 2: Giải các phương trình sau a, căn 3x -5 căn 12x + 7 căn 27x =12 b, x / 1+ căn 1+x -1
so sánh
a) 1+căn 5 và căn 24
b) căn 2002 + căn 2004 và 2 căn 2005
a) Ta có:
√2005 + √2003 > √2002 + √2000
<=> 1/(√2005 + √2003) < 1/(√2002 + √2000)
<=> 2/(√2005 + √2003) < 2/(√2002 + √2000)
<=> (2005 - 2003)/(√2005 + √2003) < (2002 - 2000)/(√2002 + √2000)
<=> √2005 - √2003 < √2002 - √2000
<=> √2005 + √2000 < √2002 + √2003
b) Tương tự câu a
√(a + 6) + √(a + 4) > √(a + 2) + √a
<=> 1/[√(a + 6) + √(a + 4)] < 1/[√(a + 2) + √a]
<=> 2/[√(a + 6) + √(a + 4)] < 2/[√(a + 2) + √a]
<=> [(a + 6) - (a + 4)/[√(a + 6) + √(a + 4)] < [(a + 2) - a]/[√(a + 2) + √a]
<=> √(a + 6) - √(a + 4) < √(a + 2) - √a
<=> √(a + 6) + √a < √(a + 4) + √(a + 2)
1. So sánh 1+căn 15 và căn 24
2.Giải phương trình
a. x^3-5x^2=2x^2-10
b.3x-7 căn x= 20
c.1+ căn 3x > 3
d. x^2 - x căn x - 5x - căn x - 6 = 0
1/
Ta có: \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)
\(\sqrt{24}^2\)= 24 = 16 + 8
Vì: \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)
Nên: \(\sqrt{15}< 4\)
=> \(2\sqrt{15}< 8\)
=> \(16+2\sqrt{15}< 24\)
=> \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)
Vậy \(1+\sqrt{15}< \sqrt{24}\)
2/
b/ \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)
<=> \(3x-7\sqrt{x}-20=0\)
<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)
<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)
<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)
<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)
<=> \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)
<=> \(x=16\)
Vậy S=\(\left\{16\right\}\)
c/ \(1+\sqrt{3x}>3\)
<=> \(\sqrt{3x}>2\)
<=> \(3x>4\)
<=> \(x>\frac{4}{3}\)
d/ \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))
<=> \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)
<=> \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)
<=> \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\)
<=> \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)
<=> \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)
<=> \(x+1=0\) hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)
<=> \(x=-1\)(loại) hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)
Vậy S={ 9 }
so sánh căn 15-1 và căn 10
Hộ nha
\(\sqrt{15}-1< \sqrt{16}-1=3\)
\(3< \sqrt{10}\)
Do đó: \(\sqrt{15}-1< \sqrt{10}\)
so sánh
a)8 và căn 63
b)căn 170 và 13
c) 15 và căn 227
d) căn 3 + căn 14 và căn 5 +4
\(8=\sqrt{64}\)
vì 64>63
8>căn 63
\(13=\sqrt{169}\)
vì 170>169
căn 170 > 13
\(15=\sqrt{225}\)
vì 225<227
15 < căn 227
1) So sánh hai số sau:
a) căn 54 và 9-căn 27
b)-căn 64+15 và -căn 15-8
c)căn 81 phần 25-8 phần 7 và 9 phần 5 - 8 phần 7
GIÚP MÌNH VỚI NHÉ CÁC BẠN
So sánh a) 15 và căn bậc hai của 235
b) căn bậc hai của 7 + căn bậc hai của 15 và 7
\(\sqrt{235}\)=15,32970972
=>15<\(\sqrt{235}\)