rút gọn: \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7}+2\sqrt{10}}\)
Rút gọn các biểu thức sau:
a) \(0,2\sqrt{\left(-10\right)^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}\) b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
c) \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right):\sqrt{6}\) d) \(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
bài 1 rút gọn
a)\(\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}\)
b)\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
c)\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
bài 2
a) \(\frac{\sqrt{7}-\sqrt{14}}{1-\sqrt{2}}\)
b)\(\frac{\sqrt{6-5\sqrt{3}}}{2\sqrt{2}-10}\)
c) \(\frac{7-2\sqrt{10}}{5-\sqrt{10}}\)
\(A=\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}\)
\(A^2=\left(7+2\sqrt{10}+7-2\sqrt{10}\right)+2\sqrt{\left(7-2\sqrt{10}\right)\left(7+2\sqrt{10}\right)}\)
\(=14+2\sqrt{49-40}=14+6=20\)
Khi đó:\(A=\sqrt{20}\)
Các câu còn lại bạn làm nốt nhé
Rút gọn căn thức :
A = \(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)\(\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
Rút gọn:
1) \(\dfrac{16-6\sqrt{7}}{\sqrt{7}-3}\)
2) \(\dfrac{\left(\sqrt{3}-\sqrt{2}\right)^2+4\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
3) \(\dfrac{\left(\sqrt{3}+2\sqrt{5}\right)^2-8\sqrt{15}}{\sqrt{6}-2\sqrt{10}}\)
Giúp em với ạ. Help mee !!!
Câu 1,2 bạn đã đăng và có lời giải rồi
Câu 3:
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)
rút gọn
\(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
Bài này khó quá mình không biết làm .
RÚT GỌN:\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
= \(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
=\(\frac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)
= \(\frac{\sqrt{3}+3+\sqrt{2}-\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{2}+\sqrt{5}\right)}\)
= \(\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{2}-\sqrt{5}}\)
= \(\sqrt{3}+\sqrt{5}+3\)
Bạn Khanh đúng r chỉ sai chỗ\(\sqrt{5+2\sqrt{6}}=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\) mới đúng
Rút gọn :
\(A=\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(B=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{5}}}}\)
\(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(D=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(E=\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
A = \(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
A = \(\dfrac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{5}+\sqrt{2}\right)}\)
A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}-\sqrt{2}}\) = \(\dfrac{3}{1}\) = \(3\)
C = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
C = \(\left(4+\sqrt{15}\right).\left(\sqrt{40-10\sqrt{15}}-\sqrt{24-6\sqrt{15}}\right)\)
C = \(\left(4+\sqrt{15}\right)\left(\sqrt{\left(5-\sqrt{15}\right)^2}-\sqrt{\left(\sqrt{15}-3\right)^2}\right)\)
C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\left(\sqrt{15}-3\right)\right)\)
C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\sqrt{15}+3\right)\)
C = \(\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
C = \(32-8\sqrt{15}+8\sqrt{15}-30=2\)
D = \(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(\sqrt{30-10\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(\sqrt{\left(5-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(5-\sqrt{5}-\left(\sqrt{5}-1\right)\right)\left(3+\sqrt{5}\right)\)
D = \(\left(5-\sqrt{5}-\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\)
D = \(\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
D = \(18+6\sqrt{5}-6\sqrt{5}-10=8\)
E = \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{5}}\)
E = \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
E = \(3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
Rút gọn \(A=\left(\sqrt{6+\sqrt{20}}-2\sqrt{3-\sqrt{5}}+\sqrt{15-10\sqrt{2}}\right):\left(2+\sqrt{8}\right)\)
\(A=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{2}.\sqrt{6-2\sqrt{5}}+\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}}{2\left(\sqrt{2}+1\right)}\)
\(=\dfrac{\sqrt{5}+1-\sqrt{2}\left(\sqrt{5}-1\right)+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)
\(=\dfrac{\sqrt{5}+1-\sqrt{10}+\sqrt{2}+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)
\(=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}=\dfrac{1}{2}\)
Rút gọn : \(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)