Những câu hỏi liên quan
TP
Xem chi tiết
NT
16 tháng 8 2021 lúc 22:11

a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)

b: ĐKXĐ: \(x< \dfrac{15}{2}\)

c: ĐKXĐ: \(x\le0\)

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
H24
18 tháng 8 2023 lúc 18:21

a)

Điều kiện để $1-2x > 0$ (đối số dương) là:

$1 > 2x$

$x < \frac{1}{2}$

Vậy, để biểu thức $log_3(1-2x)$ có nghĩa, giá trị của $x$ phải nhỏ hơn $\frac{1}{2}$.

Bình luận (0)
H24
18 tháng 8 2023 lúc 18:22

b)

Điều kiện để $x+1 \neq 0$ và $x+1 \neq 1$ là:

$x \neq -1$ và $x \neq 0$

Vậy, để biểu thức $log_{x+1}5$ có nghĩa, giá trị của $x$ không được bằng -1 hoặc 0.

Bình luận (0)
H24
Xem chi tiết
LL
27 tháng 10 2021 lúc 20:06

a) ĐKXĐ: \(10-5x< 0\Leftrightarrow5x>10\Leftrightarrow x>2\)

b) ĐKXĐ: \(7-3x>0\Leftrightarrow3x< 7\Leftrightarrow x< \dfrac{7}{3}\)

c) ĐKXĐ: \(-5-2x\ge0\Leftrightarrow2x\le-5\Leftrightarrow x\le-\dfrac{5}{2}\)

Bình luận (0)
H24
27 tháng 10 2021 lúc 20:07

a) \(x>2\)

b) \(x< \dfrac{7}{3}\)

c) \(x\le-\dfrac{5}{2}\)

Bình luận (0)
NT
27 tháng 10 2021 lúc 20:09

a: ĐKXĐ: x>2

b: ĐKXĐ: \(x< \dfrac{7}{3}\)

Bình luận (0)
TA
Xem chi tiết
H24
Xem chi tiết
NV
20 tháng 7 2016 lúc 9:00

Để biểu thức có nghĩa thì : x2 - 5x + 6 > 0 

=> (x - 2)(x - 3) > 0

Xét 2 trường hợp:

+ Với \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x>3\end{cases}\Rightarrow}x>3}\)

+ Với \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x< 3\end{cases}\Rightarrow}x< 2}\)

                               Vậy x < 2 hoặc x > 3 thì biểu thức có nghĩa

Bình luận (0)
HA
Xem chi tiết
TQ
30 tháng 5 2021 lúc 7:44

Đặt \(\frac{\sqrt{x}}{x-4}=a\left(a\inℤ\right)\)

Nếu x không là số chính phương,ta có:

\(\Rightarrow\sqrt{x}=\left(x-4\right)a\)

Mặt khác;\(\hept{\begin{cases}\sqrt{x}\notinℤ\\\left(x-4\right)a\inℤ\end{cases}}\)

Suy ra mâu thuẫn 

Do đó,x là số chính phương. 

\(\Rightarrow\sqrt{x}\inℤ\)

Ta lại có :Để \(\frac{\sqrt{x}}{x-4}\inℤ\Leftrightarrow\sqrt{x}⋮x-4\Rightarrow\left(\sqrt{x}\right)^2⋮x-4\)

\(\Leftrightarrow\left(x-4\right)+4⋮x-4\)

\(\Rightarrow4⋮x-4\)

Mà x là số nguyên nên x-4 là số nguyên

\(\Rightarrow x-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow x\in\left\{0;2;3;5;6;8\right\}\)

Mà x là số chính phương nên x=0(thỏa mãn)

Vậy khi x=0 thì \(\frac{\sqrt{x}}{x-4}\inℤ\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
TT
16 tháng 9 2021 lúc 16:44

Giups mình vs ạ

Bình luận (0)
HP
16 tháng 9 2021 lúc 16:46

a. ĐKXĐ: Mọi x

b. ĐKXĐ: x > \(\dfrac{1}{5}\)

Bình luận (0)
TT
16 tháng 9 2021 lúc 16:50

:))))

Bình luận (1)
BN
Xem chi tiết
ZZ
21 tháng 2 2019 lúc 20:13

\(P=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(P=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\inℤ\Leftrightarrow x+4\sqrt{x}+3⋮\sqrt{x}\)

Giải tiếp nhé sau đó thử chọn :V

Bình luận (0)
NT
21 tháng 2 2019 lúc 20:19

\(p=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)

Để \(x\in Z\Rightarrow P\in Z\)

\(\Rightarrow\sqrt{x}\inƯ\left(3\right)= \left\{-3;3\right\}\)

\(\Leftrightarrow x=9\left(t.mĐKXĐ\right)\)

Bình luận (0)
NC
21 tháng 2 2019 lúc 20:20

Với x >0

\(P=\frac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)

Để P nhận giá trị nguyên thì \(\frac{3}{\sqrt{x}}\in Z\Leftrightarrow\sqrt{x}\in U\left(3\right)\Leftrightarrow\sqrt{x}\in\left\{1,3\right\}\)<=> x thuộc {1, 9}

Bình luận (0)