Những câu hỏi liên quan
TN
Xem chi tiết
AH
18 tháng 11 2021 lúc 18:19

Lời giải:

a.

$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$

$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.

$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$

$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$

$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$

Bình luận (0)
SK
Xem chi tiết
LN
24 tháng 7 2017 lúc 15:57

Liên hệ giữa phép nhân và phép khai phương

Bình luận (0)
A4
Xem chi tiết
NT
10 tháng 9 2023 lúc 21:40

\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)

\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

2017>2015

=>căn 2017>căn 2015

=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)

=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)

=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)

Bình luận (0)
HL
Xem chi tiết
NT
12 tháng 2 2022 lúc 8:01

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

Bình luận (0)
VV
Xem chi tiết
HQ
4 tháng 7 2021 lúc 16:03

\(8^2=64=32+2\sqrt{16^2}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)

\(=32+2\sqrt{16^2-1}\)

\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)

\(8>\sqrt{15}+\sqrt{17}\)

\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)

\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)

\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)

\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

Bình luận (0)
 Khách vãng lai đã xóa
AL
4 tháng 7 2021 lúc 15:57

mik chọn điền

mik lười chép ại đề bài 

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
NM
19 tháng 9 2021 lúc 13:47

\(a,\left(\sqrt{\sqrt{3}}\right)^4=3< 4=\left(\sqrt{2}\right)^4\Rightarrow\sqrt{\sqrt{3}}< \sqrt{2}\\ b,\left(\sqrt{2\sqrt{3}}\right)^4=12< 18=\left(\sqrt{3\sqrt{2}}\right)^4\Rightarrow\sqrt{2\sqrt{3}}=\sqrt{3\sqrt{2}}\\ c,\left(2+\sqrt{6}\right)^2=8+4\sqrt{6};5^2=25=8+17;\left(4\sqrt{6}\right)^2=96< 289=17^2\\ \Rightarrow4\sqrt{6}< 17\Rightarrow2+\sqrt{6}< 5\\ d,\left(7-2\sqrt{2}\right)^2=57-28\sqrt{2};4^2=16=57-41;\left(28\sqrt{2}\right)^2=1568< 41^2=1681\\ \Rightarrow28\sqrt{2}< 41\Rightarrow7-2\sqrt{2}>4\\ e,\left(\sqrt{15}+\sqrt{8}\right)^2=23+4\sqrt{30};7^2=49=23+26;\left(4\sqrt{30}\right)^2=240< 676=26^2\\ \Rightarrow4\sqrt{30}< 26\Rightarrow\sqrt{15}+\sqrt{8}< 7\)

\(f,\left(\sqrt{37}-\sqrt{14}\right)^2=51-2\sqrt{518};\left(6-\sqrt{15}\right)^2=51-12\sqrt{15};\left(2\sqrt{518}\right)^2=2072;\left(12\sqrt{15}\right)^2=2160\\ \Rightarrow2\sqrt{518}< 12\sqrt{15}\Rightarrow\sqrt{37}-\sqrt{14}>6-\sqrt{15}\)

Bình luận (1)
TV
Xem chi tiết
AH
7 tháng 8 2021 lúc 11:40

Lời giải:

$\sqrt{15}< \sqrt{16}=4$

$\sqrt{17}< \sqrt{25}=5$

$\Rightarrow \sqrt{15}+\sqrt{17}< 9< 16$

Bình luận (0)
NO
Xem chi tiết
PK
14 tháng 8 2016 lúc 13:11

a/ \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{2.3}=5+2\sqrt{6}=5+\sqrt{24}\)

\(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)

Vì \(\sqrt{24}< \sqrt{25}\)

=>\(\sqrt{2}+\sqrt{3}< \sqrt{10}\)

b/\(\left(\sqrt{3}+2\right)^2=3+4+4\sqrt{3}=7+4\sqrt{3}\)

\(\left(\sqrt{2}+\sqrt{16}\right)^2=2+16+2\sqrt{2.16}=18+4\sqrt{8}\)

=> \(\sqrt{3}+2< \sqrt{2}+\sqrt{16}\)

c/ \(16=\sqrt{16^2}\)

\(\sqrt{15}.\sqrt{17}=\sqrt{15.17}=\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\)

=> \(16>\sqrt{15}.\sqrt{17}\)

d/\(8^2=64=32+32=32+2\sqrt{256}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=15+17+2\sqrt{15.17}=32+2\sqrt{255}\)

=> \(8>\sqrt{15}+\sqrt{17}\)

 

 

 

Bình luận (2)
HA
Xem chi tiết
NN
28 tháng 2 2020 lúc 13:58

theo ket qua cho thay:9.4594<10

Bình luận (0)
 Khách vãng lai đã xóa
VT
28 tháng 2 2020 lúc 13:59

Ta có :

\(\sqrt{3}< \sqrt{4}=2\)

\(\sqrt{8}< \sqrt{9}=3\)

\(\sqrt{24}< \sqrt{25}=5\)

\(\Rightarrow\sqrt{3}+\sqrt{8}+\sqrt{24}< 2+3+5=10\)(đpcm)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
KK
28 tháng 2 2020 lúc 14:00

\(\sqrt{3}+\sqrt{8}+\sqrt{24}< \sqrt{4}+\sqrt{9}+\sqrt{25}\)

\(=2+3+5=10\)

Vậy: \(\sqrt{3}+\sqrt{8}+\sqrt{24}< 10\)

Bình luận (0)
 Khách vãng lai đã xóa