Những câu hỏi liên quan
PD
Xem chi tiết
HH
4 tháng 8 2017 lúc 9:22

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

Bình luận (0)
H24
Xem chi tiết
NL
10 tháng 4 2021 lúc 17:06

Phương trình có 2 nghiệm phân biệt khi và chỉ khi:

\(\Delta'=m^2-\left(m^2-m+1\right)>0\)

\(\Leftrightarrow m-1>0\)

\(\Rightarrow m>1\)

Bình luận (0)
H24
10 tháng 4 2021 lúc 18:15

A,pt có 2 no pb

`<=>Delta>0`

`<=>4m^2-4(m^2-m+1)>0`

`<=>4(m-1)>0`

`<=>m-1>0`

`<=>m>1`

Bình luận (0)
TH
Xem chi tiết
NT
19 tháng 2 2022 lúc 22:41

a, \(\Delta'=m^2-\left(m^2-4\right)=4>0\)

Vậy pt luôn có 2 nghiệm pb x1;x2 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-4\end{cases}}\)

Ta có : \(2x_1-3x_2=-1\left(3\right)\)Từ (1) ;(3) ta có hệ 

\(\hept{\begin{cases}2x_1+2x_2=4m\\2x_1-3x_2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}5x_2=4m+1\\x_1=2m-x_2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{4m+1}{5}\\x_1=\frac{10-4m-1}{5}=\frac{-4m+9}{5}\end{cases}}\)

Thay vào (2) ta được \(\frac{\left(4m+1\right)\left(-4m+9\right)}{25}=m^2-4\)

\(\Rightarrow-16m^2+36m-4m+9=25\left(m^2-4\right)\)

\(\Leftrightarrow41m^2-32m-109=0\)

bạn tự tính = delta' nhé, có gì sai bảo mình do số khá to và phức tạp á 

Bình luận (0)
 Khách vãng lai đã xóa
NT
19 tháng 2 2022 lúc 22:43

b, Ta có \(\left|x_1\right|=\left|x_2\right|\)suy ra 

\(\left|\frac{4m+1}{5}\right|=\left|\frac{9-4m}{5}\right|\Rightarrow\left|4m+1\right|=\left|9-4m\right|\)

TH1 : \(4m+1=9-4m\Leftrightarrow8m=8\Leftrightarrow m=1\)

TH2 : \(4m+1=4m-9\left(voli\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
ZN
20 tháng 2 2022 lúc 20:39

Ta tính được \(\delta\) \(=\left(-2m\right)^2-4\left(m^2-4\right)=16>0\)

= > PT có 2 nghiệm phân biệt với mọi m 

\(x_1=\frac{2m+4}{2}=m+2\)

\(x_2=\frac{2m-4}{2}=m-2\)

a, \(2.x_1-3.x_2=-1\)

\(\Leftrightarrow2\left(m+2\right)-3.\left(m-2\right)=-1\)

\(\Leftrightarrow2m-3m+4+6=1\)

\(\Leftrightarrow m=9\)

b, \(\left|x_1\right|=\left|x_2\right|\)

\(\left|m+2\right|=\left|m-2\right|\)

\(\Leftrightarrow\hept{\begin{cases}m+2=m-2\\m+2=2-m\end{cases}}\)

\(\Leftrightarrow m=0\)

Bình luận (0)
 Khách vãng lai đã xóa
PU
Xem chi tiết
NT
9 tháng 4 2022 lúc 13:21

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

Bình luận (0)
DY
Xem chi tiết
NL
11 tháng 9 2021 lúc 21:28

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

Bình luận (0)
H24
Xem chi tiết
NT
17 tháng 4 2023 lúc 18:37

Δ=(-2m)^2-4(m^2-m)

=4m^2-4m^2+4m=4m

Để (1) có 2 nghiệm phân biệt thì 4m>0

=>m>0

x1^2+x2^2=4-3x1x2

=>(x1+x2)^2-2x1x2=4-3x1x2

=>(2m)^2+m^2-m=4

=>4m^2+m^2-m-4=0

=>5m^2-m-4=0

=>5m^2-5m+4m-4=0

=>(m-1)(5m+4)=0

=>m=1 hoặc m=-4/5(loại)

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
HH
4 tháng 8 2017 lúc 15:42

x^2-3x-(m-1)=0(1)

a)Dể phương trình có 2 nghiệm dương phân biệt:delta>0,S>0,P>0

9+4m-4>0>>>m>-5/4;S=3>0;P=m-1>0>>m>1.

>>>>Để(1) có 2 nghiệm phân biệt thì m>1.

b)x1^3+x2^3=18>>>(x1+x2)(x1^2-x1x2+x2^2)=18>>>x1^2-x1x2+x2^2=6

>>>(x1+x2)^2-3x1x2=6>>>3x1x2=3>>>x1x2=1

-(m-1)=1>>>m=0.

Vậy m=0

Bình luận (0)
N1
Xem chi tiết
N1
13 tháng 12 2019 lúc 22:24

Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
5 tháng 5 2022 lúc 21:07

`a)` Thay `m = 1` vào ptr:

       `x^2 - 2 . 1 x + 1^2 - 1 + 1 = 0`

`<=>x^2 - 2x + 1 = 0`

`<=>(x - 1)^2=0`

`<=>x-1=0<=>x=1`

___________________________________________

`b)` Ptr có `2` nghiệm pb

`<=>\Delta' > 0`

`<=>b'^2-ac > 0`

`<=>(-m)^2-(m^2-m+1) > 0`

`<=>m^2-m^2+m-1 > 0`

`<=>m > 1`

Bình luận (17)