Những câu hỏi liên quan
H24
Xem chi tiết

tự lm nhóe

Bình luận (0)
NT
16 tháng 10 2019 lúc 19:46

Tự tìm ĐKXĐ nhé

\(P=\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)

\(=\frac{1}{\sqrt{x}+2}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}\)

\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

c, \(P=\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

Để \(P\in Z\Rightarrow1+\frac{2}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

\(\Rightarrow\sqrt{x}=\left\{-1;0\right\}\)

\(\Rightarrow x=\left\{0\right\}\)

Kết hợp với ĐKXĐ =>...

Bình luận (0)
BB
Xem chi tiết
NL
2 tháng 3 2021 lúc 22:31

\(M=3\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)+\dfrac{1}{2xy}\ge\dfrac{12}{2xy+x^2+y^2}+\dfrac{2}{\left(x+y\right)^2}=\dfrac{14}{\left(x+y\right)^2}=14\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
TH
2 tháng 3 2021 lúc 22:32

Áp dụng bđt đã cho ta có \(M=4\left(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\right)-\dfrac{1}{x^2+y^2}\ge\dfrac{16}{2xy+x^2+y^2}-\dfrac{2}{\left(x+y\right)^2}=\dfrac{16}{\left(x+y\right)^2}-\dfrac{2}{\left(x+y\right)^2}=14\).

Đẳng thức xảy ra khi và chỉ khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
VL
Xem chi tiết
DD
Xem chi tiết
Xem chi tiết
DD
4 tháng 10 2020 lúc 19:52

B1 

Ta có

\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)

Dấu "=" xảy ra <=> a=6

Vậy Min A = 39 <=> a=6

Bình luận (0)
 Khách vãng lai đã xóa
KN
4 tháng 10 2020 lúc 19:57

 \(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)

Đẳng thức xảy ra khi a = 6

Bình luận (0)
 Khách vãng lai đã xóa
KK
4 tháng 10 2020 lúc 19:59

B3: Áp dụng bđt AM-GM

\(A=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{3\left(a+b\right)}{4\sqrt{ab}}\ge2\sqrt{\frac{a+b}{4\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}+\frac{3\left(a+b\right)}{4\left(\frac{a+b}{2}\right)}\)

\(=1+\frac{3\left(a+b\right)}{2\left(a+b\right)}=1+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(a=b>0\)

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
CM
Xem chi tiết
TN
Xem chi tiết
ZZ
21 tháng 7 2020 lúc 21:16

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
21 tháng 7 2020 lúc 21:01

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
21 tháng 7 2020 lúc 21:05

1) có \(2y\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow\left(\sqrt{xy}+\frac{1}{4\sqrt{xy}}\right)^2+\frac{15}{16xy}+\frac{1}{2}\ge\frac{15}{16}\cdot4+\frac{1}{2}=\frac{17}{4}\)

Dấu "=" xảy ra <=> \(x=y=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
BD
18 tháng 7 2016 lúc 15:00

Bài 1:a,

A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc 

Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2 

b,làm tt câu a 

Bình luận (0)
TM
18 tháng 7 2016 lúc 15:17

câu 1 của bạn chính sác đấy

Bình luận (0)