Cho a,b,x là các số dương. Tính GTNN của P = \(\frac{\left(x+a\right)\left(x+b\right)}{x}\)
\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}\)
cho a,b,x là các số dương . Tìm GTNN của biểu thức
Cho x>0 và a,b là các hằng số dương cho trước. Tìm GTNN của biểu thức
P= \(\left(\sqrt{x}+\frac{a}{\sqrt{x}}\right)\left(\sqrt{x}+\frac{b}{\sqrt{x}}\right)\)
Cho a,b,c,d là các số dương. Tìm GTNN của biểu thức \(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\)
Tìm GTNN
\(A=\frac{x^2+y^2}{\left(x+y\right)^2}\)
\(B=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}\)\(x>0\)
\(C=\frac{a^2}{x}+\frac{b^2}{y}\)(a và b là hằng số dương đã cho)
Cho a,b,c là các số dương khác nhau đôi một với hai số thay đổi luôn thoả mãn x>0;y<0 Tìm GTLN của
\(\frac{\left(a-x\right)\left(a-y\right)}{a\left(a-b\right)\left(a-c\right)}+\frac{\left(b-x\right)\left(b-y\right)}{b\left(b-c\right)\left(b-a\right)}+\frac{\left(c-x\right)\left(c-y\right)}{c\left(c-a\right)\left(c-b\right)}\)
1) Cho 2 số dương x;y thay đổi thỏa mãn xy=2.
Tìm GTNN của M=\(\frac{1}{x}+\frac{2}{y}+\frac{3}{2x+y}\)
2) Cho a,b là các số dương thay đổi thỏa mãn a+b=2.
Tìm GTNN của Q=\(2\left(a^2+b^2\right)-6\left(\frac{a}{b}+\frac{b}{a}\right)+9\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)
mọi người giúp mình 2 bài này với, xin cảm ơn
1) Cho a,b,c là các số dương
Tính giá trị nhỏ nhất của \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
2) Tập hợp các giá trị của x thỏa mãn:\(\left|x-1\right|+\left|1-x\right|=2\)
3) Cho a,b,c,là các số dương.Tính giá trị nhỏ nhất của \(B=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
2) Ta có : \(\left|x-1\right|+\left|1-x\right|=2\) (1)
Xét 3 trường hợp :
1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)
2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)
3. Với x = 1 , phương trình vô nghiệm.
Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)
1) Cách 1:
Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)
Vậy Min A = 9 <=> a = b = c
Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)
\(\frac{\left(a-x\right)\left(a-y\right)}{a\left(a-b\right)\left(a-c\right)}+\frac{\left(b-x\right)\left(b-y\right)}{b\left(b-c\right)\left(b-a\right)}+\frac{\left(c-x\right)\left(c-y\right)}{c\left(c-a\right)\left(c-b\right)}\)
Tìm min của biểu thức biết a,b,c là các số thực dương khác nhau đôi một
trong đó x,y là 2 số dương thay đổi luôn có tổng là 1:
P/S bài này là em đố các bạn mong cô Linh Chi ko trả lời :D
cho x;y;z;t là các số thực dương thỏa mãn x+y+z+t=2 HÃY TÌM GTNN của
A= \(\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\)
Ta có:
\(4A=\frac{\left(x+y+z+t\right)^2\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(\ge\frac{4\left(x+y+z\right)t\left(x+y+z\right)\left(x+y\right)}{xyzt}\)
\(=\frac{4\left(x+y+z\right)^2\left(x+y\right)}{xyz}\ge\frac{16\left(x+y\right)z\left(x+y\right)}{xyz}\)
\(=\frac{16\left(x+y\right)^2}{xy}\ge\frac{64xy}{xy}=64\)
\(\Rightarrow A\ge16\)
Đấu = xảy ra khi \(t=2z=4x=4y=1\)
x;y;z;t >0 áp dụng bất đẳng thức Cô-si cho 2 số dương ta có :
=\(x+y\ge2\sqrt{xy}\)
=\(\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\)
=\(\left(x+y+z\right)+t\ge2\sqrt{\left(x+y+z\right)t}\)
nhân các vế tương ứng ta có:
\(\left(x+y\right)\left(x+y+z\right)\left(x+y+z+t\right)\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
mà x+y+z+t=2
\(\left(x+y\right)\left(x+y+z\right)2\ge8\sqrt{xyzt\left(x+y\right)\left(x+y+z\right)}\)
=\(\sqrt{\left(x+y\right)\left(x+y+z\right)}\ge4\sqrt{xyzt}\)
=\(\left(x+y\right)\left(x+y+z\right)\ge16xyzt\)
\(\Rightarrow B=\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge\frac{16xyzt}{xyzt}=16\)
vậy minB=16 khi\(\hept{\begin{cases}x=y\\x+y=z\\x+y+z=t\end{cases}};x+y+z+t=2\Rightarrow x=y=0.25;z=0.5;t=1\)