Cho x\(\ge\)0. Tim Min
Q=\(\frac{x^2+2x+17}{2\left(x+1\right)}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 1:
* Tìm GTNN của biểu thức \(Q=x-4\sqrt{2x-1}\).
Giải:
ĐK: \(x\ge\frac{1}{2}\)
Ta có : \(Q=x-4\sqrt{2x-1}\)
\(\Rightarrow2Q=2x-8\sqrt{2x-1}=\left(2x-1\right)-8\sqrt{2x-1}+16-16+1=\left(\sqrt{2x-1}-4\right)^2-15\ge-15\)
\(\Rightarrow Q\ge\frac{-15}{2}\)
Vậy MinQ=\(\frac{-15}{2}\) <=> (tự giải ra)
Bài 2 : Giải các bất phương trình sau :
11 , \(\left(2x-7\right)\left(4-5x\right)\ge0\)
12 , \(x^2-x-20>2\left(x-11\right)\)
13 , \(3x\left(2x+7\right)\left(9-3x\right)\ge0\)
14 , \(x^3+8x^2+17x+10< 0\)
15 , \(x^3+6x^2+11x+6>0\)
16 , \(\frac{\left(2x-5\right)\left(x+2\right)}{-4x+3}>0\)
17 , \(\frac{x-3}{x+1}>\frac{x+5}{x-2}\)
18 , \(\frac{x-3}{x+5}< \frac{1-2x}{x-3}\)
19 , \(\frac{3x-4}{x-2}>1\)
20 , \(\frac{2x-5}{2-x}\ge-1\)
a) \(\frac{2}{x-1}\)≤\(\frac{5}{2x-1}\)
b)\(\frac{2x-5}{2-x}\)≥-1
c)\(\frac{\left(x+1\right)\left(x+2\right)}{-x+3}\)>0
d) \(\frac{2x-5}{2-x}\)+x≥0
e)\(\frac{2x+3}{x-1}\)≤x+1
1. Tìm x ϵ Q sao cho:
a) (2x-3). (x+1) < 0.
b) \(\left(x-\frac{1}{2}\right).\left(x+3\right)\)> 0.
2. Tính:
S=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{999.1001}\)
3. Tìm x: Biết x không thuộc{-2; -5; -10; -17}
\(\frac{3}{\left(x+2\right).\left(x+5\right)}+\frac{5}{\left(x+5\right).\left(x+10\right)}+\frac{7}{\left(x+10\right).\left(x+17\right)}=\frac{x}{\left(x+2\right).\left(x+17\right)}\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
1. Tìm x ϵ Q sao cho:
a) (2x-3). (x+1) < 0.
b) \(\left(x-\frac{1}{2}\right).\left(x+3\right)>0\)
2.Tính:
S=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{999.1001}\)
3.Tìm x: Biết x không thuộc{-2; -5; -10; -17}
\(\frac{3}{\left(x+2\right).\left(x+5\right)}+\frac{5}{\left(x+5\right).\left(x+10\right)}+\frac{7}{\left(x+10\right).\left(x+17\right)}=\frac{x}{\left(x+2\right).\left(x+17\right)}\)
tự làm nhé. bài cô Kiều cho dễ mừ :)
Câu 1: Xét dấu:
a, f(x)= (x2+3x+2)(x+4)
b, f(x)= \(\frac{x+1}{\left(x^2+1\right)\left(4-x^2\right)}\)
Câu 2: Giải bất phương trình:
a, (2x+3)(x2-x-2)≥0
b, \(\frac{x+3}{\left(x^2-1\right)}\)≥0
c, \(\frac{x}{x+1}\)≥2x
@Akai Haruma @Nguyễn Thành Trương giúp em với ạ
1. Cho a,b \(\ge\)0 và a+b\(\le\)2 . Chứng minh \(\frac{2+\alpha}{1+\alpha}+\frac{1-2b}{1+2b}\ge\frac{8}{7}\)
2. Tìm x: \(\frac{\frac{2x-1}{2}-3}{4}-\frac{4-\frac{1+2x}{3}}{2}=\frac{5-\frac{1}{2}X}{6}-3\)
3.tìm x: \(\left(x-2\right)^2-3\left(x-1\right)+2x^2\left(x-1\right)=\left(2x+1\right)^2+2\left(x^3-2\right)\)
4. Rút Gọn B = \(\left(\frac{X+2}{X+1}-\frac{2X}{X-1}\right)\div\frac{X}{3X+3}+\frac{4X^2+X+7}{X^2-X}\)
tìm x biết
a, ( 2x - 3 ) ( x + 1 ) <0
b, ( x - \(\frac{1}{2}\) ) ( x + 3) >0
c,\(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
biết không thuộc { -2, -5 ,-10 ,-17 }
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
Cho \(x\ge y\ge z>0.CMR:\frac{x^2y}{2}+\frac{y^2z}{2}+\frac{z^2x}{2}\ge\left(x^2+y^2+z^2\right)^2\)