cho a,b,c > 0 va abc = 0 tim min
\(a^3+b^3+c^3+\frac{2c}{a+b}+\frac{2a}{b+c}+\frac{2b}{c+a}\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\)≥3
Cho a,b,c >0 và a+b+c=3.
Tìm min \(P=\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\)
Ta sẽ sử dụng phương pháp Cauchy ngược dấu để CM bài toán này
Xét \(\frac{a^2}{a+2b^3}=\frac{a\left(a+2b^3\right)-2ab^3}{a+2b^3}=a-\frac{2ab^3}{a+2b^3}\)
\(=a-\frac{2ab^3}{a+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{ab^6}}=a-\frac{2}{3}\cdot\frac{ab}{\sqrt[3]{a}}\)
\(=a-\frac{2}{3}\cdot\left(b\sqrt[3]{a^2}\right)=a-\frac{2}{3}\cdot b\cdot\sqrt[3]{a\cdot a\cdot1}\)
\(\ge a-\frac{2}{9}\cdot b\cdot\left(a+a+1\right)=a-\frac{2b}{9}\left(2a+1\right)=a-\frac{2}{9}\left(2ab+b\right)\)
Tương tự ta biến đổi với các phân thức còn lại:
\(\frac{b^2}{b+2c^3}\ge b-\frac{2}{9}\left(2bc+c\right)\) và \(\frac{c^2}{c+2a^3}=c-\frac{2}{9}\left(2ca+a\right)\)
Cộng vế 3 BĐT trên lại ta được: \(P\ge\left(a+b+c\right)-\frac{2}{9}\left[2\left(ab+bc+ca\right)+\left(a+b+c\right)\right]\)
\(\ge3-\frac{2}{9}\left[2\cdot\frac{\left(a+b+c\right)^2}{3}+3\right]=3-\frac{2}{9}\left(2\cdot3+3\right)=1\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
Vậy Min(P) = 1 khi a = b = c = 1
Cho a,b,c>0.Tìm Min A=\(\frac{a^4}{b^3\left(c+2a\right)}+\frac{b^4}{c^3\left(a+2b\right)}+\frac{c^4}{a^3\left(b+2c\right)}\)
Em không chắc lắm đâu nhé!
Biến đổi \(A=\frac{\left(\frac{a^4}{b^2}\right)}{b\left(c+2a\right)}+\frac{\left(\frac{b^4}{c^2}\right)}{c\left(a+2b\right)}+\frac{\left(\frac{c^4}{a^2}\right)}{a\left(b+2c\right)}\)
\(=\frac{\left(\frac{a^2}{b}\right)^2}{b\left(c+2a\right)}+\frac{\left(\frac{b^2}{c}\right)^2}{c\left(a+2b\right)}+\frac{\left(\frac{c^2}{a}\right)^2}{a\left(b+2c\right)}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel:\(A\ge\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)
Áp dụng BĐT Cauchy-Schwarz cho cái biểu thức trong ngoặc ở trên tử,ta lại được:
\(A\ge\frac{\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{a+b+c}\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\) (áp dụng BĐT quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) cho cái biểu thức dưới mẫu)
Dấu "=" xảy ra khi a = b =c
Vậy \(A_{min}=1\Leftrightarrow a=b=c\)
Cho \(\hept{\begin{cases}ab+bc+ca=3\\a,b,c>0\end{cases}}\)
Tim Min P= \(\frac{a}{1+2b^3}+\frac{b}{1+2c^3}+\frac{c}{1+2a^3}\)
ta có
\(\frac{a}{1+2b^3}=\frac{a\left(1+2b^3\right)-2ab^3}{1+2b^3}=a-\frac{2ab^3}{1+2b^3}\)
Vì \(1+2b^3\ge3b^2\left(cosi\right)\)
\(\Rightarrow a-\frac{2ab^3}{a+2b^3}\ge a-\frac{2}{3}ab\)
cmtt ta đc
P\(\ge a+b+c-\frac{2}{3}\left(ab+bc+ca\right)\)
\(P\ge a+b+c-2\)
mặt khác \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)
\(\Rightarrow a+b+c\ge3\)
\(\Rightarrow P\ge3-2=1\)
Dấu = xảy ra a=b=c=1
Cho a+b+c=3 và a,b,c>0. Tìm Min A=\(\frac{a\sqrt{a}}{\sqrt{a+b+2c}}+\frac{b\sqrt{b}}{\sqrt{b+c+2a}}+\frac{c\sqrt{c}}{\sqrt{c+a+2b}}\)
\(A=\frac{a\sqrt{a}}{\sqrt{a+b+2c}}+\frac{b\sqrt{b}}{\sqrt{b+c+2a}}+\frac{c\sqrt{c}}{\sqrt{c+a+2b}}\)
\(A=\frac{a^2}{\sqrt{a\left(a+b+2c\right)}}+\frac{b^2}{\sqrt{b\left(b+c+2a\right)}}+\frac{c^2}{\sqrt{c\left(c+a+2b\right)}}\)
\(\ge\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\)
Xét: \(2\left(\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\right)\)
\(=\sqrt{4a\left(a+b+2c\right)}+\sqrt{4b\left(b+c+2a\right)}+\sqrt{4c\left(c+a+2b\right)}\)
\(\le\frac{4a+a+b+2c+4b+b+c+2a+4c+c+a+2b}{2}=4\left(a+b+c\right)\)
\(\Rightarrow\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}\le2\left(a+b+c\right)\)
\(\Rightarrow\frac{\left(a+b+c\right)^2}{\sqrt{a\left(a+b+2c\right)}+\sqrt{b\left(b+c+2a\right)}+\sqrt{c\left(c+a+2b\right)}}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{3}{2}\)
\("="\Leftrightarrow a=b=c=1\)
1. cho \(0< a\le b\le c\) . Cmr: \(\frac{2a^2}{b^2+c^2}+\frac{2b^2}{c^2+a^2}+\frac{2c^2}{a^2+b^2}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
2. cho \(a,b,c\ge0\). cmr: \(a^2+b^2+c^2+3\sqrt[3]{\left(abc\right)^2}\ge2\left(ab+bc+ca\right)\)
3. \(a,b,c>0.\) Cmr: \(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
4. \(a,b,c>0\). Tìm Min \(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Cách khác câu 2:Đặt \(\left(a,b,c\right)=\left(a^3,b^3,c^3\right)\)
Có: \(VT-VP=\frac{1}{6} \sum\, \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2}+\frac{2}{3} \sum \,{a}^{2}{b}^{2} \left( a -b \right) ^{2} \geq 0\)
Bất đẳng thức trên vẫn đúng trong trường hợp $a,b,c$ là các số thực.
Thật vậy ta chỉ cần chứng minh$:$
\(\frac{1}{6}\sum \left( 3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \left( a -b \right) ^{2} \left( a+b-c \right) ^{2} \geq 0\)
Chú ý \(\sum\left(a-b\right)\left(a+b-c\right)=0\)
Ta đưa về chứng minh: \(\sum (3\,{a}^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc) \geq 0 \,\,\,\,\,\,(1)\)
Và \(\sum \left( 3\,{a}^{2}+2\,ab+4\,ac+2\,bc+3\,{c}^{2} \right) \left( 3\,{a} ^{2}+4\,ab+2\,ac+3\,{b}^{2}+2\,bc \right) \geq 0 \,\,\,\,(2)\)
$(1)$ dễ chứng minh bằng tam thức bậc $2$.
Chứng minh $(2):$
$$\text{VT} = {\frac {196\, \left( a+b+c \right) ^{4}}{27}} + \sum{\frac { \left( a-b \right) ^{2} \left( 47\,a+26\,c+47\,b \right) ^{2}
}{2538}}+\sum {\frac {328\,{c}^{2} \left( a-b \right) ^{2}}{141}} \geq 0$$
Xong.
Vũ Minh Tuấn, @Nk>↑@, Nguyễn Văn Đạt, Băng Băng 2k6, tth, Nguyễn Thị Diễm Quỳnh, Lê Thị Thục Hiền,
Aki Tsuki, @Trần Thanh Phương, @Nguyễn Việt Lâm, @Akai Haruma
giúp e vs ạ! cần gấp! thanks nhiều!
cho a,b,c > va a^2+b^2+c^2=3
tim max Q=\(\frac{a}{a^2+2a+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2b+3}\)
\(\frac{b^2c^3}{a^2+\left(b+c\right)^3}+\frac{c^2a^3}{b^2+\left(c+a\right)^3}+\frac{a^2b^3}{c^2+\left(a+b\right)^3}\ge\frac{9abc}{4\left(3abc+a^2c+b^2a+c^2b\right)}\)voi a,b,c>0
Cho a, b, c >0 thỏa mãn : a2 + b2 + c2 = 3
Tìm MIN :
A= \(\frac{a^3+b^3}{a+2b}+\frac{b^3+c^3}{b+2c}+\frac{c^3+a^3}{c+2a}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz và AM-GM:
\(A=\frac{a^4}{a^2+2ab}+\frac{b^4}{ab+2b^2}+\frac{b^4}{b^2+2bc}+\frac{c^4}{bc+2c^2}+\frac{c^4}{c^2+2ac}+\frac{a^4}{ca+2a^2}\)
\(\geq \frac{(a^2+b^2+b^2+c^2+c^2+a^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}=\frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}\geq \frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+a^2+b^2+c^2)}\)
hay \(A\geq \frac{2}{3}(a^2+b^2+c^2)=2\)
Vậy $A_{\min}=2$. Dấu "=" xảy ra khi $a=b=c=1$