Violympic toán 9

NN

Cho a, b, c >0 thỏa mãn : a2 + b2 + c2 = 3

Tìm MIN :

A= \(\frac{a^3+b^3}{a+2b}+\frac{b^3+c^3}{b+2c}+\frac{c^3+a^3}{c+2a}\)

AH
31 tháng 12 2019 lúc 15:33

Lời giải:

Áp dụng BĐT Cauchy-Schwarz và AM-GM:

\(A=\frac{a^4}{a^2+2ab}+\frac{b^4}{ab+2b^2}+\frac{b^4}{b^2+2bc}+\frac{c^4}{bc+2c^2}+\frac{c^4}{c^2+2ac}+\frac{a^4}{ca+2a^2}\)

\(\geq \frac{(a^2+b^2+b^2+c^2+c^2+a^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}=\frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+ab+bc+ac)}\geq \frac{4(a^2+b^2+c^2)^2}{3(a^2+b^2+c^2+a^2+b^2+c^2)}\)

hay \(A\geq \frac{2}{3}(a^2+b^2+c^2)=2\)

Vậy $A_{\min}=2$. Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AR
Xem chi tiết
PC
Xem chi tiết
PP
Xem chi tiết
VH
Xem chi tiết
BL
Xem chi tiết
HD
Xem chi tiết
TQ
Xem chi tiết
DD
Xem chi tiết
AR
Xem chi tiết