Tìm GTNN của \(\frac{x^2+2x+17}{2\left(x+10\right)}\) (x>=0)
1. Tìm x ϵ Q sao cho:
a) (2x-3). (x+1) < 0.
b) \(\left(x-\frac{1}{2}\right).\left(x+3\right)\)> 0.
2. Tính:
S=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{999.1001}\)
3. Tìm x: Biết x không thuộc{-2; -5; -10; -17}
\(\frac{3}{\left(x+2\right).\left(x+5\right)}+\frac{5}{\left(x+5\right).\left(x+10\right)}+\frac{7}{\left(x+10\right).\left(x+17\right)}=\frac{x}{\left(x+2\right).\left(x+17\right)}\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
1. Tìm x ϵ Q sao cho:
a) (2x-3). (x+1) < 0.
b) \(\left(x-\frac{1}{2}\right).\left(x+3\right)>0\)
2.Tính:
S=\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{999.1001}\)
3.Tìm x: Biết x không thuộc{-2; -5; -10; -17}
\(\frac{3}{\left(x+2\right).\left(x+5\right)}+\frac{5}{\left(x+5\right).\left(x+10\right)}+\frac{7}{\left(x+10\right).\left(x+17\right)}=\frac{x}{\left(x+2\right).\left(x+17\right)}\)
tự làm nhé. bài cô Kiều cho dễ mừ :)
Tìm GTNN của \(\frac{x^2+2x+17}{2\left(x+1\right)}\) (x>=0)
ta có \(\frac{x^2+2x+17}{2\left(x+1\right)}\) = \(\frac{x^2+2x+1+16}{2\left(x+1\right)}\) = \(\frac{\left(x+1\right)^2+16}{2\left(x+1\right)}\) = \(\frac{x+1}{2}\) +\(\frac{8}{x+1}\)
áp dụng bđt cô si a+b ≥ 2√ab ta có
\(\frac{x+1}{2}\) +\(\frac{8}{x+1}\) ≥ 2\(\sqrt{\frac{x+1}{2}.\frac{8}{x+1}}\) = 2\(\sqrt{4}\) =2.2=4 vậy gtnn là 4 khi x=3
tìm x biết
a, ( 2x - 3 ) ( x + 1 ) <0
b, ( x - \(\frac{1}{2}\) ) ( x + 3) >0
c,\(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
biết không thuộc { -2, -5 ,-10 ,-17 }
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
Tìm GTNN:
a, \(\frac{4x^2-6x+1}{\left(2x-1\right)^2}\)
b, \(\frac{\left(x+10\right)^2}{x}\)vs x>0
\(\frac{\left(x+10\right)^2}{x}=\frac{x^2+2x+100}{x}\)
Vì \(x>0\) nên \(\left(x^2+2x+100\right)>0\forall x\)
Mà \(x^2+2x>0\)( vì x>0 )
\(\Rightarrow x^2+2x+100\ge100\)
Vậy GTNN của bt trên là 100
P/s: Cái này tui không chắc lắm ! Có gì sai mong bạn bỏ qua!
Tìm GTNN của phân thức P=\(\frac{^{x^2+2x+17}}{2\left(x+1\right)}\)
đề này chắc chắn thiếu điều kiện của x, nếu ko sẽ ko tồn tại min
Cho x,y > 0 thỏa mãn x+y=1.Tìm GTNN của biểu thức P=\(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
Chứng minh BĐT phụ:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Giờ thì chứng minh thôi:3
Áp dụng BĐT Cauchy-schwarz dạng engel ta có:
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)
\(=8\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)
Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)
=> Min P=18
Cho 2 số x, y > 0 thoả mãn x+y = 1.
Tìm GTNN của \(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
xin nhá xin nhá =))
Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x=y=1/2
Vậy ...
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)