bài 2 :tìm x bt
a, \(\sqrt{2x=4}\)
b, 4x = 8
c, \(\sqrt{\left(x-3\right)^2}\)= 6
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
Tìm x
\(a.\dfrac{\sqrt{5x+7}}{x+3}=4\)
\(b.\left(7+\sqrt{x}\right).\left(8-\sqrt{x}\right)=11+x\)
\(c.\sqrt{2x^2+2-4x}=6\)
giải pt :
a, \(\left(x^2+2\right)^2+4\left(x+1\right)^3+\sqrt{x^2+2x+5}=\left(2x-1\right)^2+2\)
b, \(\sqrt{4x^2+x+6}=4x-2+7\sqrt{x+1}\)
c, \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
giải pt , \(\sqrt{x^4+4x^2}+\sqrt{x+x^2}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}.\)
\(x=0\)
\(x^3=0\)
\(x^3=2.0.\sqrt{0}\)
\(x^3=2x\sqrt{x}\)
\(x^3=2x\sqrt{x}\)
\(4\left(x^3-2x\sqrt{x}\right)^2=0\)
\(4\left(x^6-4x^4\sqrt{x}+4x^2x\right)=0\)
\(4x^6-16x^4\sqrt{x}+16x^2x=0\)
\(4x^6+16x^3=16x^4\sqrt{x}\)
\(16x^4+4x^5+4x^6+16x^3=16x^4+4x^5+16x^4\sqrt{x}\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(4x^4+4x^4\sqrt{x}+x^4.x\right)\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(2x^2+x^2\sqrt{x}\right)^2\)
\(2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)\)
\(x^4+x^2+4x^2+x+2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)+x^4+x^2+4x^2+x\)
\(\left(\sqrt{x^4+4x^2}+\sqrt{x^2+x}\right)^2=\left(x^4+2x^2\sqrt{x}+x\right)+9x^2\)
\(\sqrt{x^4+4x^2}+\sqrt{x^2+x}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}\)
vậy x=0 là nghiệm của pt =))
cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?
B1:Giải bpt sau:\(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right).\left(x^6-x^3+x^2-x+1\right)\ge0\)
B2:Cho a;b;c>0 thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).CMR \(3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)
B3:giải pt nghiệm nguyên sau : \(6\left(y^2-1\right)+3\left(x^2+y^2z^2\right)+2\left(z^2-9x\right)=0\)
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)
câu hình
ad bđt svacso
\(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_b}\ge\frac{9}{h_a+2h_b}\)
tt vs mấy cái còn lại rồi dùng S=p.r
giải pt :
a, \(\sqrt{x-\sqrt{x^2-1}}+\sqrt{x+\sqrt{x^2-1}}=2\)
b, \(\left(x^2+2\right)^2+4\left(x+1\right)^3+\sqrt{x^2+2x+5}=\left(2x-1\right)^2+2\)
c, \(\sqrt{4x^2+x+6}=4x-2+7\sqrt{x+1}\)
d, \(\sqrt{x-2}-\sqrt{x+2}=2\sqrt{x^2-4}-2x+2\)
Tìm x biết:
a)\(\sqrt{9x^2}=6\)
b)\(\sqrt{\left(x-2\right)^2}=5\)
c)\(\sqrt{x^2-6x+9}=3\)
d)\(\sqrt{x^2+4x+4}-2x=3\)
`a)sqrt{9x^2}=6`
`<=>|3x|=6`
`<=>|x|=2`
`<=>x=+-2`
`b)sqrt{(x-2)^2}=5`
`<=>|x-2|=5`
`**x-2=5`
`<=>x=7`
`**x-2=-5`
`<=>x=-3`
`c)sqrt{x^2-6x+9}=3`
`<=>\sqrt{(x-3)^2}=3`
`<=>|x-3|=3`
`**x-3=3`
`<=>x=6`
`**x-3=-3`
`<=>x=0`
`d)sqrt{x^2+4x+4}-2x=3`
`<=>sqrt{(x+2)^2}=3+2x`
`<=>|x+2|=2x+3(x>=-3/2)`
`**x+2=2x+3`
`<=>x=-1(tm)`
`**x+2=-2x-3`
`<=>3x=-5`
`<=>x=-5/3(l)`
Sử dụng công thức:`sqrtA^2=|A|`
ĐKXĐ : \(x\in R\)
a, \(\sqrt{9x^2}=\left|3x\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ..
b, \(\sqrt{\left(x-2\right)^2}=\left|x-2\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Vậy ...
c, \(\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}=\left|x-3\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)
Vậy ..
d, \(\sqrt{x^2+4x+4}-2x=\sqrt{\left(x+2\right)^2}-2x=\left|x+2\right|-2x=3\)
\(\Leftrightarrow\left|x+2\right|=2x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=2x+3\\x+2=-2x-3\end{matrix}\right.\\2x+3\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{3}{2}\\\left[{}\begin{matrix}x=-1\left(TM\right)\\x=-\dfrac{5}{3}\left(L\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy ..
Bài 1: giải p.trình
a,\(\sqrt{x^2-4x+4}=1\)
b,\(\sqrt{1-4x+4x^2}=5\)
c,\(\sqrt{a\left(1-2x+x^2\right)}-6=0\)
d,\(\sqrt{9x^2}=2x+1\)
e,\(\sqrt{9-6x+x^2}=x\)
a, ĐKXĐ: \(x^2-4x+4\ge0\Rightarrow\left(x-2\right)^2\ge0\left(luônđúng\right)\)
\(\sqrt{x^2-4x+4}=1\\ \Rightarrow x-2=1\\ \Rightarrow x=3\)
b,\(ĐKXĐ:1-4x+4x^2\ge0\Rightarrow\left(1-2x\right)^2\ge0\left(luônđúng\right)\)
\(\sqrt{1-4x+4x^2}=5\\ \Rightarrow\left|1-2x\right|=5\\ \Rightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
d, ĐKXĐ: \(\left\{{}\begin{matrix}9x^2\ge0\\2x+1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x\ge0\)
\(\sqrt{9x^2}=2x+1\\ \Rightarrow\left|3x\right|=2x+1\\ \Rightarrow\left[{}\begin{matrix}3x=2x+1\\3x=-2x+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
c, ĐKXĐ: \(1-2x+x^2\ge0\Rightarrow\left(1-x\right)^2\ge0\left(luônđúng\right)\)
\(\sqrt{1-2x+x^2}-6=0\\ \Rightarrow\left|1-x\right|=6\\ \Rightarrow\left[{}\begin{matrix}1-x=-6\\1-x=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
e, \(\left\{{}\begin{matrix}9-6x+x^2\ge0\\x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(3-x\right)^2\ge0\left(luônđúng\right)\\x\ge0\end{matrix}\right.\)\(\Rightarrow x\ge0\)
\(\sqrt{9-6x+x^2}=x\\ \Rightarrow\left|3-x\right|=x\\ \Rightarrow\left[{}\begin{matrix}3-x=-x\\3-x=x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3=0\left(vôlí\right)\\x=1,5\end{matrix}\right.\)
a) \(\sqrt{x^2-4x+4}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b) \(\sqrt{1-4x+4x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-2x\right)^2}=5\Leftrightarrow\left|1-2x\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
c) \(\sqrt{x\left(1-2x+x^2\right)}-6=0\)
\(\Leftrightarrow\left(\sqrt{x\left(1-x\right)^2}\right)^2=36\Leftrightarrow x\left(1-x\right)^2=36\)
\(\Leftrightarrow x-2x^2+x^3-36=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+2x+9\right)=0\)
\(\Leftrightarrow x=4\)(do \(x^2+2x+9=\left(x+1\right)^2+8>0\))
d) \(\sqrt{9x^2}=2x+1\)
\(\Leftrightarrow3\left|x\right|=2x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=2x+1\\-3x=2x+1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{5}\end{matrix}\right.\)
e) \(\sqrt{9-6x+x^2}=x\left(1\right)\left(đk:x\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(3-x\right)^2}=x\Leftrightarrow\left|3-x\right|=x\)
TH1: \(0\le x\le3\)
\(\left(1\right)\Leftrightarrow3-x=x\Leftrightarrow x=\dfrac{3}{2}\)
TH2: \(x>3\)
\(\left(1\right)\Leftrightarrow x-3=x\Leftrightarrow-3=0\left(vn\right)\)
Giải các phương trình sau: (hệ phương trình)
1.\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
2.\(\sqrt{3-4x}+\sqrt{4x+1}=-16x^2-8x+1\)
3. \(\sqrt{x^2-2x+5}+\sqrt{x+1}=2\)
4. \(\left(-4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\)
5. \(\sqrt{-4x-1}+\sqrt{4x^2+8x+3}=-4x^2-4x\)
6. \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
7. \(\sqrt{x\left(x-1\right)}+\sqrt{x\left(x+2\right)}=2\sqrt{x^2}\)
Ai làm được 4 bài hoặc nhiều hơn mik sẽ tick nha :)