Những câu hỏi liên quan
HH
Xem chi tiết
TN
28 tháng 11 2017 lúc 12:26

Áp dụng BĐT AM-GM ta có:

\(A=\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)\(=\frac{2011x+2013}{\sqrt{1-x^2}}+2012\)

\(=\frac{2012\left(x+1\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2012\)\(\ge\frac{2\sqrt{2012\left(x+1\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2012\)

\(\ge\frac{2\sqrt{2012\left(1-x^2\right)}}{\sqrt{1-x^2}}+2012=2\sqrt{2012}+2012\)

Bình luận (0)
TT
Xem chi tiết
TP
27 tháng 7 2019 lúc 11:03

\(B=2x+3\sqrt{x}-28\)

Ta có điều kiện: \(x\ge0\)

Do đó \(B\ge2\cdot0+3\cdot0-28=-28\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

\(C=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)

\(C=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)

Áp dụng bất đẳng thức Cô-si :

\(C\ge2\sqrt{\frac{2011\sqrt{x}}{\sqrt{x}}}-2=2\sqrt{2011}-2\)

Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\)

Bình luận (0)
CA
Xem chi tiết
PC
Xem chi tiết
VS
Xem chi tiết
H24
14 tháng 8 2017 lúc 20:29

chụi thôi bạn à

Bình luận (0)
VS
14 tháng 8 2017 lúc 20:32

là sao

Bình luận (0)
NT
Xem chi tiết
ML
Xem chi tiết
QA
29 tháng 7 2021 lúc 21:03

Trả lời:

a, \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-3}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\) \(\left(đkxđ:x\ge0;x\ne9\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)

\(=\frac{x-3\sqrt{x}}{x-9}+\frac{2x+3\sqrt{x}-9}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)

\(=\frac{x-3\sqrt{x}+2x+3\sqrt{x}-9-2x+\sqrt{x}+3}{x-9}\)

\(=\frac{x+\sqrt{x}-6}{x-9}\)

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
KN
Xem chi tiết
NL
27 tháng 8 2020 lúc 14:09

a) Ta có: \(A=\sqrt{4x^2+4x+2}=\sqrt{\left(4x^2+4x+1\right)+1}\)

\(=\sqrt{\left(2x+1\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy Min(A) = 1 khi x = -1/2

b) Ta có: \(B=\sqrt{2x^2-4x+5}=\sqrt{\left(2x^2-4x+2\right)+3}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(B) = \(\sqrt{3}\) khi x = 1

Bình luận (0)
 Khách vãng lai đã xóa