\(B=\sqrt{x+2}+\frac{3}{11}\left(x\ge-2\right)\)Tính GTLN
Sắp thi học kì rồi
mau ôn tập đi các bạn
Ôn Tập Cơ Bản
1) Tìm điều kiện để các biểu thức sau có nghĩa:
a) \(\sqrt{11-2x}\)
b) \(\sqrt{9x-18}\)
c) \(\sqrt{\dfrac{3}{x^2}}\)
d) \(\sqrt{\dfrac{5}{x-7}}\)
2) Rút gọn:
a) \(\sqrt{16x^2}-2x^2\) với x \(\ge\) 0
b) \(\sqrt{9\left(x+5\right)^2}+2-3x\) với x
c) \(\sqrt{\left(x-5\right)^2}-4x\) với x < 5
\(1,\\ a,ĐK:11-2x\ge0\Leftrightarrow x\le\dfrac{11}{2}\\ b,ĐK:9x-18\ge0\Leftrightarrow x\ge2\\ c,ĐK:x\ne0;\dfrac{3}{x^2}\ge0\left(luôn.đúng.do.3>0;x^2>0\right)\Leftrightarrow x\in R\backslash\left\{0\right\}\\ d,ĐK:\dfrac{5}{x-7}\ge0\Leftrightarrow x-7>0\left(5>0;x-7\ne0\right)\Leftrightarrow x>7\\ 2,\\ a,=\left|4x\right|-2x^2=4x-2x^2\\ b,bạn.thiếu.điều.kiện.nhé\\ c,=\left|x-5\right|-4x=5-x-4x=5-5x\)
Bài 2:
a: \(\sqrt{16x^2}-2x^2=4x-2x^2\)
c: \(\sqrt{\left(x-5\right)^2}-4x=5-4x-x=5-5x\)
tìm số nguyên x
a) (x-3)+(x-2)+(x-1)+....+10+11=11
b) \(\frac{2}{3}\).\(\left[\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right]\)<= x <=\(4\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{6}\right]\)
giúp mình nha mai mình đi học rồi. minh cần gấp lắm bạn nào giải được thì mau giải giúp mình nha
1. Chứng minh rằng, với mọi a,b, c, x, y, z ta có:
\(ax+by+cz+\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)}\ge\frac{2}{3}\left(a+b+c\right)\left(x+y+z\right)\)
2. Cho a, b, c > 0. Chứng minh rằng:
\(\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\ge1\)
Ngày mai đổi sang đăng các bài ôn thi HSG @@. Các em nhớ vào làm nha!
1/ Không mất tính tổng quát, giả sử \(a\ge b\ge c\text{ và }x\ge y\ge z\)
Ta sẽ chứng minh \(ax+by+cz\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)\)(Thấy giông giống BĐT Chebyshev nhưng không biết có phải không nên ko dám áp dụng, chứng minh cho chắc:D)
\(\Leftrightarrow3ax+3by+3cz\ge\left(a+b+c\right)\left(x+y+z\right)\)
\(\Leftrightarrow2\left(ax+by+cz\right)\ge a\left(y+z\right)+b\left(z+x\right)+c\left(x+y\right)\)
\(\Leftrightarrow\left(2x-y-z\right)a+\left(2y-z-x\right)b+\left(2z-x-y\right)c\ge0\)
\(\Leftrightarrow\left(2x-y-z\right)a-\left[\left(2x-y-z\right)+\left(2z-x-y\right)\right]b+\left(2z-x-y\right)c\ge0\)
\(\Leftrightarrow\left(2x-y-z\right)\left(a-b\right)+\left(2z-x-y\right)\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(a-b\right)+\left(x-z\right)\left(a-c\right)+\left(y-z\right)\left(b-c\right)\ge0\) (Đúng do giả sử)
Như vậy: \(VT\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)}\)
\(\ge\frac{1}{3}\left(a+b+c\right)\left(x+y+z\right)+\sqrt{\frac{\left(a+b+c\right)^2\left(x+y+z\right)^2}{9}}=\frac{2}{3}\left(a+b+c\right)\left(x+y+z\right)=VP\)
Ta có đpcm.
Is that true? Em không chắc ở cái bổ đề ban đầu, khi biến đổi có thể làm lộn, nhưng em lại ngại làm kỹ nên em đã làm tắt:v
Bài 1 nếu tự nhiên ép \(x\ge y\ge z \) đồng thời\(a\ge b \ge c\) thì lời giải rất vô duyên. Có thể làm cách khá như sau
Nếu đặt \(t=\sqrt{\frac{x^2+y^2+z^2}{a^2+b^2+c^2}}\) và giả sử \(\left(x,y,z\right)=\left(tp,tq,tr\right)\) thì ta có \(a^2+b^2+c^2=p^2+q^2+r^2\)
Khi đó cần cm \(ap+bq+cr+a^2+b^2+c^2\ge\frac{2}{3}\left(a+b+c\right)\left(p+q+r\right)\)
\(\Leftrightarrow\frac{4}{3}\left(a+b+c\right)\left(p+q+r\right)\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2\left(\text{*}\right)\)
Dùng bdt \(ab\le\frac{\left(a+b\right)^2}{4}\) và \(\frac{\left(a+b+c\right)^2}{3}\le a^2+b^2+c^2\) ta có:
\(VT\left(\text{*}\right)\le\frac{\left(a+b+c+p+q+r\right)^2}{3}\le\left(a+p\right)^2+\left(b+q\right)^2+\left(c+r\right)^2=VP\left(\text{*}\right)\)
Thâm à nha:) Bài 2 là IMO 2001, em đã nêu đáp án tại đây: Câu hỏi của IMO 2001 - Toán lớp 9 - Học toán với OnlineMath
Mọi người ơi giải bài tập này hộ tớ đi
Mai tớ kt 1 tiết rồi
a)
\(\frac{\left(2x+1\right)^2}{4}+\frac{\left(2x-1\right)^2}{2}\ge\frac{12\left(x+5\right)^2}{4}\) ;
b)
\(\frac{\left(1-x\right)^2}{7}-\frac{2\left(x+3\right)^2}{3}\le\frac{-11\left(x+5\right)^2}{21}\) ;
c)
\(|5-3x|=2+x\)
a,<=>\(\frac{\left(2x+1\right)^2}{4}\)+\(\frac{2\left(2x-1\right)^2}{4}\)≥\(\frac{12\left(x+5\right)^2}{4}\)
<=>4x2+4x+1+2(4x2-4x+1)≥12(x2+10x+25)
<=>4x2+4x+1+8x2-8x+2≥12x2+120x+300
<=>4x2+4x+1+8x2-8x+2-12x2-120x-300≥0
<=>-124x-297≥0
<=>124x+297≤0
<=>124x≤-297
<=>x≤\(\frac{-297}{124}\)
b, Tương tự câu a
c, |5−3x|=2+x
TH1: 5-3x=2+x
<=> -3x - x = 2 - 5
<=> -4x = -3
<=> x = 3/4
TH2: 5-3x = -2 - x
<=> -3x + x = -2 - 5
<=> -2x = -7
<=> x = 7/2
Rút gọn biểu thức
a.\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
b.\(\frac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
c.\(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
d.\(\left(x^2-x+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right)\left(x^{16}-x^8+1\right)\)
MONG CÁC BẠN CÓ THỂ BỎ RA VÀI PHÚT ĐỂ GIÚP MÌNH=))NÓ CŨNG GIÚP BẠN ÔN TẬP ĐƯỢC CÁC BÀI CHUẨN BỊ CHO KÌ THÌ MÀ=))MÌNH XIN CẢM ƠN RẤT RẤT NHIỀU
a) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(=\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{ab^2-b^3-ac^2+bc^2}\)
\(=\frac{\left(a^2b-b^2a\right)+\left(b^2c-a^2c\right)+c^2\left(a-b\right)}{b^2\left(a-b\right)-c^2\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)+c\left(b^2-a^2\right)+c^2\left(a-b\right)}{\left(b^2-c^2\right)\left(a-b\right)}\)
\(=\frac{ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)}{\left(b-c\right)\left(b+c\right)\left(a-b\right)}\)
\(=\frac{ab-c\left(a+b\right)+c^2}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{ab-ac+c^2-bc}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a\left(b-c\right)-c\left(b-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{\left(b-c\right)\left(a-c\right)}{\left(b-c\right)\left(b+c\right)}\)
\(=\frac{a-b}{b+c}\)
Sửa lại: \(\frac{a-c}{b+c}\)
Cho các số dương x,y,z . Chứng minh BĐT :
\(\frac{\left(x+1\right)\left(y+1\right)^2}{3\sqrt[3]{z^2x^2}+1}+\frac{\left(y+1\right)\left(z+1\right)^2}{3\sqrt[3]{x^2y^2}+1}+\frac{\left(z+1\right)\left(x+1\right)^2}{3\sqrt[3]{y^2z^2}+1}\ge x+y+z+3\)
ko bt lm thi đừng CMT tầm bậy nhé !
bài lớp 10 bất đẳng thức mấy chú k hiểu là đúng r -______-''
hc o nha cho đó mk dg hc chi vaxma tốc độ
CHO a,b,c>0 thỏa mãn: \(a^2b^2+b^2c^2+c^2a^2\ge a^2+b^2+c^2\)
CMR: \(\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(a^2+c^2\right)}\ge\frac{\sqrt{3}}{2}\)
ĐẶT \(A=\frac{a^2b^2}{c^3\left(a^2+b^2\right)}+\frac{b^2c^2}{a^3\left(b^2+c^2\right)}+\frac{c^2a^2}{b^3\left(c^2+a^2\right)}\)
ĐẶT:\(\frac{1}{a}=x,\frac{1}{y}=b,\frac{1}{z}=c\)
\(\Rightarrow x^2+y^2+z^2\ge1\)
\(\Rightarrow A=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{z^2+y^2}\)
TA CÓ:
\(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\le\frac{1}{\sqrt{2}}\sqrt{\frac{\left(2x^2+2y^2+2z^2\right)^3}{27}}=\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)TƯƠNG TỰ:
\(y\left(x^2+z^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2},z\left(x^2+y^2\right)\le\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)LẠI CÓ:
\(A=\frac{x^3}{y^2+z^2}+\frac{y^3}{x^2+z^2}+\frac{z^3}{x^2+y^2}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(x^2+z^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(x^2+z^2\right)+z\left(x^2+y^2\right)}\ge\frac{1}{3.\frac{2}{3\sqrt{3}}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}}
\)\(\ge\frac{\sqrt{3}}{2}\sqrt{x^2+y^2+z^2}\ge\frac{\sqrt{3}}{2}\)
DẤU BẰNG XẢY RA\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\Rightarrow DPCM\)
tại tui trả lời bài này cho 1 bạn ở trên facebook nên phải chụp màn hình lại nên làm v á
Giải phương trình và bất phương trình
a, \(\frac{2x-1}{6}-x-3=\frac{3-2\left(x+5\right)}{4}\)
b, \(\left|x-4\right|+3=-3x-21\)
c, \(\frac{x-1}{2}-\frac{x-2}{3}\ge x-\frac{x-3}{4}\)
các bạn ơi !!! giúp mik với đi !! chiều nay học thêm rồi
Giải phương trình và bất phương trình
a)\(\frac{2x-1}{6}-x-3=\frac{3-2\left(x+5\right)}{4}\)
<=>\(\frac{2\left(2x-1\right)}{12}-\frac{12x}{12}-\frac{36}{12}=\frac{9-6\left(x+5\right)}{12}\)
<=>4x-2-12x-36=9-6x-30
<=>-2x= 17
<=>x=-8,5
Vậy S={-8,5}
b)\(\left|x-4\right|+3=-3x-21\)(*)
Ta có |x-4|=x-4 khi x-4≥0 <=> x≥4
khi đó (*) tạo thành x-4+3=-3x-21
<=>4x=-20
<=>x=-5(ktm)
Ta có |x-4|=-x+4 khi x-4<0<=>x<4
Khi đó (*) tạo thành -x+4+3=-3x-21
<=>2x=-28
<=>x=-14(tm)
vậy S={-14}
c)\(\frac{x-1}{2}-\frac{x-2}{3}lớnhonhoac=x-\frac{x-3}{4}\)
<=>\(\frac{6\left(x-1\right)}{12}-\frac{4\left(x-2\right)}{12}lonhonhoacbang\:\frac{12x}{12}-\frac{3\left(x-3\right)}{12}\)
<=>6x-6-4x+8≥12x-3x+9
<=>-7x≥7
<=>x≤-1
Vậy S={x/x≤-1}
Rút gọn:
a, A = \(\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\) (đk: x ≥ 0 và x ≠ 36)
b, B = \(\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\) (đk: x ≥ 0 và x ≠ 9)
c, C = \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\) (đk: a > 0, b > 0 và a ≠ b)
d, D = \(\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\) (đk: a ≥ 0, a ≠ 2, a ≠ 4)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)