cho tỉ lệ thức
a) \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
b, \(\frac{5a+2c}{5a+2d}=\frac{a-4c}{b-4d}\)
Cho tỉ lệ thức sau \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng
a. \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
b, \(\frac{5a+2c}{5a+2d}=\frac{a-4c}{b-4d}\)
a) Áp dụng tính chất tỉ lệ thức ta được:
\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) \(\left(đpcm\right)\).
Mình chỉ làm câu a) thôi nhé.
Chúc bạn học tốt!
cho tỉ tệ thức\(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng:
a,\(\frac{a+b}{a-c}=\frac{b+d}{b-c}\)
b,\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}\)
cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Cmr \(\frac{a+4c}{b+4d}=\frac{7a-2c}{7b-2d}\)
cho ti le thuc \(\frac{a}{b}=\frac{c}{d}\)chung minh:
\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Theo TCDTSBN:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
Áp dụng TCDTSBN ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4c}{4d}=\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}\)
k nhé!
Giúp mình với mọi người : tìm các giá trị a,b,c biết :
\(a,2a=-3b\) và \(-3a+b\)
b, \(4a=7b,5b=8c\) và \(10a-5b+c=100\)
Bài 2 : tìm tỉ lệ thức
a, \(\frac{a+b}{a-b}\) = \(\frac{c+d}{c-d}\)
b, \(\frac{5a+2c}{5a+2d}=\frac{a-4c}{b-4d}\)
cho tỉ lệ thức a/b=c/d. chứng minh rằng
a) a+b/a-b = c+d/c-d
b) 5a + 2c/5b+2d =a-4c/b-4d
c ab/cd = (a+b)^2 /(c+d)^2
a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)
=>a+b/a-b=c+d/c-d
b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)
c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
CMR: \(\frac{3a+2c}{3b+2d}=\frac{-5a+3c}{-5b+3d}\)
Áp dụng tính chất DTS bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{-5a}{-5b}=\frac{3c}{3d}=\frac{-5a+3c}{-5b+3d}\)
Vậy....
Cho tỉ lệ thức: a/b = c/d. CM:
a, a/b=c/d=a+4c/b+4d
b, a/b=c/d=3a+2c/3b+2d
c, a/c=b/d=a-2b/c-2d
d, a/c=b/d=5a-2b/5x-2d
Giúp mk vs. Năn nit đóa. Mk sẽ tick choa.
Tớ lỡ tay ấn nhầm, làm tiếp nhá.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a+2c}{3b+2d}\) (ĐPCM).
c) Ta có:
+) \(\dfrac{a}{c}=\dfrac{b}{d}\) mà \(\dfrac{b}{d}=\dfrac{2b}{2d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{2b}{2d}\)
Áp dụng TCDTSBN, ta có:
\(\Rightarrow\dfrac{a}{c}=\dfrac{2b}{2d}=\dfrac{a-2b}{c-2d}\) (ĐPCM)
d) Ta có:
+) \(\dfrac{a}{c}=\dfrac{b}{d}\) mà \(\dfrac{a}{c}=\dfrac{5a}{5b};\dfrac{b}{d}=\dfrac{2b}{2d}\)
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{2b}{2d}\)
Áp dụng TCDTSBN, ta có:
\(\Rightarrow\dfrac{5a}{5c}=\dfrac{2b}{2d}=\dfrac{5a-2b}{5c-2d}\) (ĐPCM)
ĐPCM là điều phải chứng minh nhá bạn, còn áp dụng TCDTSBN là áp dụng tính chất dãy tỉ số bằng nhao
Chúc bạn học tốt!
a) Ta có:
+) \(\dfrac{a}{b}=\dfrac{c}{d}\) mà \(\dfrac{c}{d}=\dfrac{4c}{4d}\)
\(\Rightarrow\)\(\dfrac{a}{b}=\dfrac{4c}{4d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{4c}{4d}=\dfrac{a+4c}{b+4d}\)(ĐPCM)
b) Ta có:
+) \(\dfrac{a}{b}=\dfrac{c}{d}\) mà \(\dfrac{a}{b}=\dfrac{3a}{3b}\); \(\dfrac{c}{d}=\dfrac{2c}{2d}\)
\(\Rightarrow\) \(\dfrac{3a}{3b}=\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
cho tỉ lệ thức a/b=c/d chưng minh rằng
a, 5a+2c/ 5b+2d =a-4c/b-4d
b,ab/cd=(a+b)2 / (c+d)2
đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
a)
\(\frac{5a+2c}{5b+2d}=\frac{5bk+2dk}{5b+2d}=\frac{k\left(5b+2d\right)}{5b+2d}=k\)
\(\frac{a-4c}{b-4d}=\frac{bk-4dk}{b-4d}=\frac{k\left(b-4d\right)}{b-4d}=k\)
=>\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}=k\)(đpcm)
b)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\frac{b}{d}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\)
=>\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)