Những câu hỏi liên quan
PB
Xem chi tiết
CT
10 tháng 4 2019 lúc 17:20

f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3 3 /2

Bình luận (0)
HN
Xem chi tiết
NL
19 tháng 9 2021 lúc 14:24

Đặt \(sinx=t\in\left[-1;1\right]\)

\(y=f\left(t\right)=t^2+2t\)

Xét hàm \(y=f\left(t\right)=t^2+2t\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=-1\in\left[-1;1\right]\)

\(f\left(-1\right)=-1\) ; \(f\left(1\right)=3\)

\(\Rightarrow y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

Bình luận (0)
NH
Xem chi tiết
NL
15 tháng 9 2021 lúc 17:47

\(-1\le sinx\le1\Rightarrow2.\left(-1\right)-4\le y\le2.1-4\)

\(\Rightarrow-6\le y\le-2\)

\(y_{min}=-6\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)

\(y_{max}=1\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 3 2018 lúc 2:17

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

Bình luận (0)
HB
Xem chi tiết
HP
15 tháng 8 2021 lúc 13:07

a, \(y=sin^2x-2sinx+3cos^2x\)

\(=sin^2x-2sinx+3\left(1-sin^2x\right)\)

\(=3-2sinx-2sin^2x\)

Đặt \(sinx=t\left(t\in\left[0;1\right]\right)\)

\(\Rightarrow y=f\left(t\right)=3-2t-2t^2\)

\(\Rightarrow y_{min}=min\left\{f\left(0\right);f\left(1\right)\right\}=-1\)

\(y_{max}=max\left\{f\left(0\right);f\left(1\right)\right\}=3\)

Bình luận (0)
HP
15 tháng 8 2021 lúc 13:33

b, \(y=sinx-cosx+sin2x+5\)

\(=sinx-cosx-\left(sinx-cosx\right)^2+6\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-t^2+t+6\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=4-\sqrt{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=6\)

Bình luận (0)
HP
15 tháng 8 2021 lúc 13:42

c, \(y=sinx-cosx+sinx.cosx-3\)

\(=sinx-cosx-\dfrac{1}{2}\left(sinx-cosx\right)^2-\dfrac{5}{2}\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t-\dfrac{5}{2}\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-\dfrac{7+2\sqrt{2}}{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-2\)

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 9 2019 lúc 6:21

Chọn C

Đặt 

Xét hàm   trên đoạn [0;1] có 

Suy ra hàm số đồng biến trên [0;1]

và 

Khi đó, 

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 1 2017 lúc 18:17

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 9 2017 lúc 2:06

Xét  − sin x + 2 cos x + 4 = 0

Ta thấy − 1 2 + 2 2 < 4 2  nên phương trình vô nghiệm.

Do đó − sin x + 2 cos x + 4 ≠ 0 .

Như vậy,  y = 2 sin x + cos x + 3 − sin x + 2 cos x + 4

⇔ y − sin x + 2 cos x + 4 = 2 sin x + cos x + 3

⇔ sin x 2 + y + cos x 1 − 2 y + 3 − 4 y = 0

Để phương trình có nghiệm thì  2 + y 2 + 1 − 2 y 2 ≥ 3 − 4 y 2

⇔ 5 y 2 + 5 ≥ 16 y 2 − 24 y + 9

⇔ 11 y 2 − 24 y + 4 ≤ 0

⇔ 2 11 ≤ y ≤ 2

Chọn đáp án D.

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2017 lúc 6:50

Ta có: -1 ≤ sin x ≤ 1

⇒ -2 ≤ -2sin x ≤ 2

⇒ 1 ≤ 3 – 2sin x ≤ 5

hay 1 ≤ y ≤ 5.

Vậy hàm số đạt giá trị lớn nhất bằng 5.

Bình luận (0)