1) Cho đoạn thẳngAC và BD cắt nhau ở trung điểm O của mỗi đoạn :
a) AD = BC ; AB = DC
b) CDA = CBA, BAD = BCD
2) Cho tam giác ABC có A = 90 độ. Gọi I là giao điểm của hai phân giác xuất phát từ đỉnh B và C. Tính số đo góc BIC.
Cho 2 đường thẳng AB vàCD cắt nhau tại trung điểm O của mỗi đoạn nối các đoạn AC, BC, BD và BA. Chứng minh rằng: a) AC = BD b) AD =BC
a: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AC=BD
Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn.
a) Chứng minh: AC=BD và AC//BD
b) Chứng minh: AD=BC và AD//BC
c) Gọi M là trung điểm của AC và N là trung điểm của BD. Chứng minh: 3 điểm M, O, N thẳng hàng.
mình ko biết cách c/m thẳng hàng ở câu c thôi ai giúp với
Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn.
a) Chứng minh: AC=BD và AC//BD
b) Chứng minh: AD=BC và AD//BC
c) Gọi M là trung điểm của AC và N là trung điểm của BD. Chứng minh: 3 điểm M, O, N thẳng hàng.
Ta có hình vẽ:
a/ Xét tam giác OAC và tam giác OBD có:
OA = OB (GT)
góc AOC = góc BOD (đối đỉnh)
OC = OD (GT)
=> tam giác OAC = tam giác OBD (c.g.c)
=> AC = BD (2 cạnh tương ứng)
Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)
=> góc CAO = góc OBD (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AC // BD (đpcm)
b/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
góc AOD = góc BOC (đối đỉnh)
OC = OD (GT)
=> tam giác OAD = tam giác OBC (c.g.c)
=> AD = BC (2 cạnh tương ứng)
Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)
=> góc DAO = góc CBO (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AD // BC 9đpcm)
c/ Ta có: COM = DON (đối đỉnh)
Ta có: góc AOD + góc AOM + góc COM = 1800
=> góc AOD + góc AOM + góc DON = 1800
hay góc MON = 1800
hay M,O,N thẳng hàng
a) Xét ΔCAO và ΔDBO có:
OA=OB (gt)
\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)
OC=OD (gt)
=> ΔCAO=ΔDBO (c.g.c)
=> AC=BD (hai cạnh tương ứng)
Vì ΔCAO=ΔDBO
=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên
=> AC//BD. (đpcm)
b) Xét ΔAOD và ΔBOC có:
OA=OB (gt)
\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)
OD=OC (gt)
=> ΔAOD=ΔBOC (c.g.c)
=> AD=BC (hai cạnh tương ứng)
Vì ΔAOD=ΔBOC
=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên
=> AD//BC (đpcm)
c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)
Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)
=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)
Vậy ba điểm M,O,N thẳng hàng
bạn vẽ hình đẹp thế, mik vẽ mãi ko ra
Cho đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh
a)∆AOD = ∆BOC
b)AC // BD và AC = BD
c)CB // AD và AD = BC
d)Lấy điểm I thuộc AD, K thuộc BC sao co AI = BK. Chứng minh rằng: O là trung điểm IK
Biết AB // CD và AB=CD
a) Chứng minh AC // BD và AC=BD
b) Chứng minh AD và BC cắt nhau ở O là trung điểm mỗi đoạn
bn ơi!
bn ko cho pyt đó là hình j thỳ sao nó cắt nhau đây?
lại 1 mâu thuẫn nữa: AB// BD(gt) z làm sao mà nó cắt nhau?
Hai đường thẳng AC và BD cắt nhau ở trung điểm O của mỗi đoạn. Chứng minh :
a) AD = BC, AB = DC
b) CDA = CBA, BAD = BCD
Xét tam giác AOD và tam giác COB có:
OA=OC(O là trung điểm AC)
^AOD=^BOC(hai góc đối đỉnh)
OD=OB(O là trung điểm BD)
=>tam giác AOD=tam giác COB(c.g.c)
=>AD=BC(hai cạnh tương ứng )
Xét tam giác AOB và tam giác COD có:
OB=OD(O là trung điểm BD)
^AOB=^DOC(hai góc đối đỉnh)
OA=OC(O là trung điểm AC)
=> tam giác AOD=tam giác COD(c.g.c)
=>AB=DC(hai cạnh tương ứng)
À sorry bn ạ. Tại mình quên ko nhìn câu b nên chưa làm. Giờ mình làm nốt ạ. Và cũng ko có ý kiếm điểm hay gì đó đâu ạ :)
Xét ΔABC và ΔCDA có:
AC:cạnh chung
AB=DC
BC=AD
=>ΔABC = ΔCDA(c.c.c)
=>^CDA=^CBA (hai góc tương ứng)
Xét ΔBAD và ΔDCB có:
AB:cạnh chung
AB=DC
AD=BC
=>ΔBAD=ΔDCB(c.c.c)
=>^BAD =^BCD(hai góc tương ứng)
vẽ 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn.
a) C/m: AC = BD
b) C/m: AD // BC
c) Lấy điểm M trên cạnh AC, điểm N trên cạnh BD sao cho AM = BN . C/m O là trung điểm MN
a) Xét \(\Delta AOC\) và \(\Delta BOD\) có :
AO = OB ( gt )
\(\widehat{O_1}=\widehat{O_2}\) ( đối đỉnh )
OC = OD ( gt )
=> \(\Delta AOC\) = \(\Delta BOD\) ( c.g.c)
=> AC = BD ( 2 cạnh tương ứng )
b)
=> \(\widehat{C_1}=\widehat{D_1}\) ( hai góc tương ứng )
=> AC // BD
c)
Kẻ MO cắt BD tại N'
Ta c/m được \(\Delta MOC=\Delta N'OD\left(g.c.g\right)\)(1)
=> N'D = MC
=> N'B = MA
=> N' trùng M
Mặt khác (1) => MO = ON
=> O là tung điểm của MN
Ta có hình vẽ
a/ Xét tam giác AOC và tam giác BOD có
-góc AOC = góc BOD (đối đỉnh)
-AO=OB (vì O là trung điểm của AB)
-CO=OD (Vì O là trung điểm của CD)
Vậy tam giác AOC = tam giác BOD
=> AC = BD (2 cạnh tương ứng)
b/ Xét tam giác AOD và tam giác BOC có
-góc AOD = góc BOC (đối đỉnh)
-AO=OB (vì O là trung điểm của AB)
-CO=OD (Vì O là trung điểm của CD)
Vậy tam giác AOD = tam giác BOC
=> góc DAB = góc ABC
Mà DAB; ABC : so le trong
=> AD//BC
c/ Vì tam giác AOC = tam giác BOD
=> góc OAC = góc OBD (2 góc tương ứng)
Xét tam giác AOM và BON có:
-góc OAC = góc OBD
-AM = BN (GT)
-AO=OB (O là trung điểm của AB)
Vậy tam giác AOM = tam giác BON
=> MO = ON (2 cạnh tương ứng)
Vậy O là trung điểm của MN (đpcm)
Ta có hình vẽ:
a) Xét Δ AOC và Δ BOD có:
OA = OB (gt)
AOC = BOD (đối đỉnh)
OC = OD (gt)
Do đó, Δ AOC = Δ BOD (c.g.c)
=> AC = BD (2 cạnh tương ứng) (đpcm)
b) Xét Δ AOD và Δ BOC có:
OA = OB (gt)
AOD = BOC (đối đỉnh)
OD = OC (gt)
Do đó, Δ AOD = Δ BOC (c.g.c)
=> góc DAO = góc CBO (2 góc tương ứng)
Mà DAO và CBO là 2 góc so le trong nên AD // BC (đpcm)
c) Ta có: AC = BD (câu a)
AM = BN (gt)
Do đó, AC - AM = BD - BN
=> MC = DN
Δ AOC = Δ BOD (câu a)
=> ACO = BDO (2 góc tương ứng)
Mà ACO và BDO là 2 góc so le trong nên AC // BD
Vì AC // BD nên ACD = CDB (so le trong)
Xét Δ COM và Δ DON có:
OC = OD (gt)
MCO = ODN (cmt)
MC = DN (cmt)
Do đó, Δ COM = Δ DON (c.g.c)
=> COM = DON (2 góc tương ứng)
Có: AOD + AOM + MOC = 180o
=> AOD + AOM + DON = 180o
=> MON = 180o hay 3 điểm M, O, N thẳng hàng (1)
Vì AC // BD nên CAB = ABD (so le trong)
Xét Δ AOM và Δ BON có:
AM = BN (gt)
MAO = OBN (cmt)
OA = OB (gt)
Do đó, Δ AOM = Δ BON (c.g.c)
=> OM = ON (2 cạnh tương ứng) (2)
Từ (1) và (2) => O là trung điểm của MN (đpcm)
Cho hai đoạn thẳng AB và CD cắt nhau tạ trung điểm O của mỗi đoạn.
a, Chứng minh AC = BD và AC // BD; AD = BC và AD // BC.
b, Vẽ CH \(\perp\) AB tại H. Trên tia đối của tia OH lấy điểm I sao cho OI = OH. Chứng minh DI = AB
Cho 2 đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn
a) Chứng Minh: AC=BD và AC//BD
b) Chứng Minh: AD=BC vàAD//BC
c) Gọi M là trung điểm của AC và N là trung điểm của BD. Chứng minh: 3 điểm M, O , N thẳng hàng
a) Vì 2 đoạn thẳng \(AB\) và \(CD\) cắt nhau tại trung điểm O của mỗi đoạn (gt).
=> \(O\) là trung điểm của \(AB\) và \(CD.\)
=> \(\left\{{}\begin{matrix}OA=OB\\OC=OD\end{matrix}\right.\) (tính chất trung điểm).
Xét 2 \(\Delta\) \(OAC\) và \(OBD\) có:
\(OA=OB\left(cmt\right)\)
\(\widehat{AOC}=\widehat{BOD}\) (vì 2 góc đối đỉnh)
\(OC=OD\left(cmt\right)\)
=> \(\Delta OAC=\Delta OBD\left(c-g-c\right)\)
=> \(AC=BD\) (2 cạnh tương ứng).
=> \(\widehat{OAC}=\widehat{OBD}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AC\) // \(BD.\)
b) Xét 2 \(\Delta\) \(OAD\) và \(OBC\) có:
\(OA=OB\left(cmt\right)\)
\(\widehat{AOD}=\widehat{BOC}\) (vì 2 góc đối đỉnh)
\(OD=OC\left(cmt\right)\)
=> \(\Delta OAD=\Delta OBC\left(c-g-c\right)\)
=> \(AD=BC\) (2 cạnh tương ứng).
=> \(\widehat{OAD}=\widehat{OBC}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AD\) // \(BC.\)
c) Ta có: \(\widehat{COM}=\widehat{DON}\) (vì 2 góc đối đỉnh).
Mà \(\widehat{AOD}+\widehat{AOM}+\widehat{COM}=180^0\left(gt\right)\)
=> \(\widehat{AOD}+\widehat{AOM}+\widehat{DON}=180^0\)
=> \(\widehat{MON}=180^0.\)
=> 3 điểm \(M,O,N\) thẳng hàng (đpcm).
Chúc bạn học tốt!