giups minhf vowis
tìm a b biết
\(\frac{a^2}{9}=\frac{b^2}{16}\)và a^2+b^2=102
Cho biết \(a^2+ab+\frac{b^2}{3}=25;c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16\)16 và \(a\ne0;c\ne0;a\ne-c\).Chứng minh rằng \(\frac{2c}{a}=\frac{b+c}{a+c}\)
biết\(a^2+ab+\frac{b^2}{3}=25;c^2+ac+\frac{b^2}{3}=9;a^2+ac+c^2=16\) và a khác 0; c khác 0;a khác -c
CMR: \(\frac{2c}{a}=\frac{b+c}{a+c}\)
cho biết \(a^2+ab+\frac{b^2}{3}=25;c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16\)và \(a\ne0;c\ne0;a\ne-c\)
CMR \(\frac{2c}{a}=\frac{b+c}{a+c}\)
\(\Leftrightarrow a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\)
\(\Leftrightarrow ab=2c^2+ca\Leftrightarrow ab+ac=2c^2+2ac\)
\(\Leftrightarrow a\left(b+c\right)=2c\left(a+c\right)\Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\rightarrowđpcm\)
Biết \(a^2+ab+\frac{b^2}{3}=25;c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16.\)
và \(a\ne0,c\ne0,a\ne-c\)
CMR:\(\frac{2c}{a}=\frac{b+c}{a+c}\)
\(\hept{\begin{cases}a^2+ab+\frac{b^2}{3}=25\\c^2+\frac{b^2}{3}=9\end{cases}}\Rightarrow a^2+ac-c^2=16\)
\(\Rightarrow a^2+ab-c^2=a^2+ac+c^2\left(=16\right)\)
\(\Rightarrow ab-c^2=ac+c^2\)
\(\Rightarrow ab=ac+2c^2\)
\(\Rightarrow ab+ac=2ac+2c^2\)
\(\Leftrightarrow a\left(b+c\right)=2c\left(a+c\right)\)
\(\Leftrightarrow\frac{2c}{a}=\frac{b+c}{a+c}\left(đpcm\right)\)
So sánh A và B biết:
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)và \(B=\frac{1}{2^2.3.5^2.7}\)
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)
\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)
Vậy \(A< B\)
biết \(a^2+ab+\frac{b^2}{3}=25;c^{2^{ }}+\frac{b^2}{3}=9;a^2+ac+c^{2^{ }}=16\)và a#0; c#0;a#-c
CMR: \(\frac{2c}{a}=\frac{b+c}{a+c}\)
Biết \(a^2+ab+\frac{b^3}{3}=25;c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16\)và \(a\ne0;c\ne0;a\ne-c\).CMR: \(\frac{2c}{2}=\frac{b+c}{a+c}\)
cho biết \(a^2+ab+\frac{b^2}{3}=25\) ; \(c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠0, b≠0, c≠0. Chứng minh : \(\frac{2c}{a}=\frac{b+c}{a+c}\)
Có \(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)
\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)
So sánh A và B biết
A = \(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
B = \(\frac{1}{2^2.3.5^2.7}\)
A = \(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)< \(\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\) =\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
= \(\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)= \(\frac{1}{2^2.3.5^2.7}\)= B
Vậy A < B