Những câu hỏi liên quan
H24
Xem chi tiết
NL
29 tháng 6 2021 lúc 8:26

Bài 2 :

\(A=4x^2-2.2x.2+4+1\)

\(=\left(2x-2\right)^2+1\)

Thấy : \(\left(2x-2\right)^2\ge0\)

\(A=\left(2x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow x=1\)

\(B=\left(5x\right)^2-2.5x.1+1-4\)

\(=\left(5x-1\right)^2-4\)

Thấy : \(\left(5x-1\right)^2\ge0\)

\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)

Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)

\(C=\left(7x\right)^2-2.7x.2+4-5\)

\(=\left(7x-2\right)^2-5\)

Thấy : \(\left(7x-2\right)^2\ge0\)

\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)

Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)

Bình luận (0)
MY
29 tháng 6 2021 lúc 8:33

\(1.\)

\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)

\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)

\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5

\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)

\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)

\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)

\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)

dấu"=" xảy ra<=>x=1/4

 

 

 

Bình luận (0)
LN
Xem chi tiết
LL
2 tháng 10 2021 lúc 15:03

a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)

\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)

d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
NT
19 tháng 7 2021 lúc 20:50

a) Ta có: \(A=x^2-5x+7\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

b) Ta có: \(B=2x^2-8x+15\)

\(=2\left(x^2-4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2-4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2+7\ge7\forall x\)

Dấu '=' xảy ra khi x=2

Bình luận (0)
TL
19 tháng 7 2021 lúc 20:51

a. `A=x^2-5x+7`

`=x^2-2.x. 5/2 + (5/2)^2 +3/4`

`=(x-5/2)^2 + 3/4`

`=> A_(min) =3/4 <=> x-5/2 =0<=>x=5/2`

b) `B=2x^2-8x+15`

`=[(\sqrt2x)^2 -2.\sqrt2 x . 2\sqrt2 +(2\sqrt2)^2] +7`

`=(\sqrt2x-2\sqrt2)^2+7`

`=> B_(min)=7 <=> x=2`.

Bình luận (0)
NT
19 tháng 7 2021 lúc 21:07

a) \(A=x^2-5x+7\)

\(=x^2-2.\dfrac{5}{2}x+\left(\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)

Mặt khác, ta có \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\)  \(\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu "=" xảy ra khi \(\left(x-\dfrac{5}{2}\right)^2=0\Leftrightarrow x-\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{5}{2}\) 

Vậy \(A_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{5}{2}\)

b) \(B=2x^2-8x+15\)

\(=4x^2-2.2x.2+2^2+11\)

\(=\left(2x-2\right)^2+11\)

Vì \(\left(2x-2\right)^2\ge0\forall x\) nên \(\left(2x-2\right)^2+11\ge11\forall x\)

Dấu "=" xảy ra khi  \(\left(2x-2\right)^2=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

Vậy \(B_{min}=11\) khi \(x=1\)

Bình luận (0)
TT
Xem chi tiết
NT
1 tháng 7 2019 lúc 14:44

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

Bình luận (0)
TT
2 tháng 7 2019 lúc 15:35

giải hết i

Bình luận (0)
CA
Xem chi tiết
TL
25 tháng 10 2016 lúc 12:15

Tìm x

a) \(\left(x+1\right)\left(x+2\right)-x^2-x=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2-x\right)=0\)

\(\Leftrightarrow2\left(x+1\right)=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

b) \(2x^2+5x-3=0\)

\(\Leftrightarrow2x^2+6x-x-3=0\)

\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-3\end{array}\right.\)

 

Bình luận (0)
LA
Xem chi tiết
H24
16 tháng 7 2019 lúc 13:56

a) \(A=\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7\right)\)

\(=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra khi x= -5/2

b) \(B=4\left(x^2+2x+\frac{3}{4}\right)=4\left(x^2+2x+1-1+\frac{3}{4}\right)\)

\(=4\left(x+1\right)^2-1\ge-1\)

"=" <=> x = -1

Vậy...

Bình luận (0)
BB
Xem chi tiết
DD
13 tháng 2 2022 lúc 12:32

undefined

Bình luận (1)
NT
13 tháng 2 2022 lúc 12:28

1.

a.\(\Leftrightarrow7x-5x=3+12\)

\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)

b.\(\Leftrightarrow6x-10-7x-7=2\)

\(\Leftrightarrow x=-19\)

c.\(\Leftrightarrow1-3x=4x-3\)

\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)

d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)

\(\Leftrightarrow-2=12\left(voli\right)\)

Bình luận (3)
NT
Xem chi tiết
NT
25 tháng 8 2020 lúc 13:20

help me, please

Bình luận (0)
 Khách vãng lai đã xóa
KN
25 tháng 8 2020 lúc 13:39

1. a . 3x2 - 6x = 0

\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b. x3 - 13x = 0

\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)

c. 5x ( x - 2001 ) - x + 2001 = 0

<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0

\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
25 tháng 8 2020 lúc 13:43

2. a. \(2x^2+4x-8=2\left(x+1\right)^2-10\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+1\right)^2-10\ge-10\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTNN của bt trên = - 10 <=> x = - 1

b. \(-x^2-8x+1=-\left(x+4\right)^2+17\)

Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)

Vậy GTLN của bt trên = 17 <=> x = - 4

Bình luận (0)
 Khách vãng lai đã xóa