Tìm điều kiện của x để biểu thức sau có nghĩa:
\(\sqrt{x^2-4x+4}\)
tìm điều kiện của x để biểu thức A= \(\sqrt{4x-3}-\sqrt[3]{x+1}\) có nghĩa
Cho biểu thức M=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}}{\sqrt{2}+2}\right).\frac{x-4}{\sqrt{4x}}\)
a) Tìm điều kiện của x để biểu thức có nghĩa.
b) Rút gọn biểu thức M.
c)Tìm x để M > 3.
\(=\left(\frac{\sqrt{x}\left(\sqrt{2}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\left(\frac{\sqrt{2\text{x}}+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)
\(=\frac{\sqrt{2\text{x}}+x}{\sqrt{2}+2}.\frac{\sqrt{x}-2}{\sqrt{4\text{x}}}\)
\(=\frac{x\sqrt{2}-2\sqrt{2\text{x}}+x\sqrt{x}-2\text{x}}{2\sqrt{2\text{x}}+4\sqrt{x}}\)
tick cho mình nha
Tìm điều kiện của x để căn thức sau có nghĩa :
\(\sqrt{\frac{2}{x^2-4x+4}}\)
Trả lời:
\(\sqrt{\frac{2}{x^2-4x+4}}\) có nghĩa \(\Leftrightarrow\hept{\begin{cases}\frac{2}{x^2-4x+4}\ge0\\x^2-4x+4\ne0\end{cases}\Leftrightarrow\frac{2}{x^2-4x+4}>0}\)
\(\Leftrightarrow x^2-4x+4>0\Leftrightarrow\left(x-2\right)^2>0\) với mọi x khác 2
Vậy với mọi x khác 2 thì căn thức có nghĩa
Tìm điều kiện của x để biểu thức sau đây có nghĩa: \(\sqrt{x^2-x+1}\)
\(\sqrt{x^2-x+1}\) có nghĩa khi \(x^2-x+1\ge0\)
Ta có \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x, ta có \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (vì 3/4 > 0)
Do đó \(x^2-x+1>0\) với mọi x
Vậy với bất cứ giá trị nào của x thì căn thức trên xác định.
ĐKXĐ: `x\inRR`
Vì `x^2-x+1=(x^2-x+1/4)+3/4=(x-1/2)^2+3/4>0AAx`
\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\)
a) tìm điều kiện của x để biểu thức có nghĩa
b) rút gọn biểu thức M
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\\rightarrow \left\{{}\begin{matrix}x>\sqrt{2}\\x>-\sqrt{2}\\x>0\end{matrix}\right.\\ \rightarrow x>\sqrt{2}\)
Vậy \(x>\sqrt{2}\)
b)
\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{\sqrt{4x}}\\ =\left[\dfrac{\sqrt{x}.\left(\sqrt{x}+2\right)+\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right].\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\\ =\dfrac{2x}{2\sqrt{x}}=\dfrac{x}{\sqrt{x}}=\dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{x}}=\sqrt{x}\)
Vậy \(M=\sqrt{x}\)
a) ĐKXĐ:
\(\left\{{}\begin{matrix}\sqrt{x}-2>0\\\sqrt{x}+2>0\\\sqrt{4x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>-2\\2\sqrt{x}>0\end{matrix}\right.\\ \rightarrow\left\{{}\begin{matrix}x>4\\x>-4\\x>0\end{matrix}\right.\\ \rightarrow x>4\)
Vậy \(x>4\)
Tìm điều kiện của x để các biểu thức sau có nghĩa
\(\sqrt{\dfrac{1}{x^2-2x+1}}\)
\(\sqrt{\dfrac{1}{x^2-2x+1}}=\sqrt{\dfrac{1}{\left(x-1\right)^2}}=\dfrac{1}{\left|x-1\right|}\)
\(\Rightarrow\) Biểu thức xác định khi \(x-1\ne0\Leftrightarrow x\ne1\).
Tìm điều kiện để các biểu thức sau có nghĩa
a, \(\sqrt{x-2}-\sqrt{x-4}\)
b, \(\dfrac{1}{\sqrt{x+1}-1}\)
c, \(\sqrt{x^2-4x+3}\)
em đang cần gấp
a) Biểu thức có nghĩa `<=> {(x-2>=0),(x-4>=0):} <=> {(x>=2),(x>=4):} <=> x>=4`
b) Biểu thức có nghĩa `<=> {(x+1>=0),(\sqrt(x+1)\ne1):} <=> {(x>=1),(x \ne 0):} <=> x >=1`
c) Biểu thức có nghĩa `<=> x^2-4x+3 >=0 <=> (x-1)(x-3) >= 0 <=> [(x>=3),(x<=1):}`
Tìm điều kiện để biểu thức sau có nghĩa:
\(\dfrac{1}{2}\sqrt{x+3}-x\sqrt{1-x}\)
ĐK:\(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)
Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}x+3>0\\1-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 1\end{matrix}\right.\Leftrightarrow-3< x< 1\)
Biểu thức trên có nghĩa khi \(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\le1\end{matrix}\right.\)
tìm điều kiện của x để biểu thức A= \(\sqrt{4-3x}-\sqrt[3]{x+1}\) có nghĩa
biểu thứ A có ý nghĩa khi \(\sqrt{4-3x}\ge0\\=>4-3x\ge0\\ =>3x\ge4=>x\ge\dfrac{4}{3}\)