Tính:
B= 1+3 +3^2+ 3^3 +3^4
Tính:B=1/3-1/3^2+1/3^3-1/3^4+...+1/3^99-1/3^100
Tham khảo:M=1/3+1/3^2+1/3^3+....+1/3^99. CMR: M<1/2
Ta có:1/(3^n)+1/(3^(n+1))=2/(3^(n+1))(cái này bạn tự quy đồng ra ra nhé!).
Áp dụng ta có:1-1/3=2/3
1/3-1/(3^2)=2/(3^2)
1/(3^2)-1/(3^3)=2/(3^3)
....
1/(3^98)-1/(3^99)=2/(3^99).
Cộng từng vế các phép tính với nhau ta có:1-1/(3^99)=2M.
Mà 1-1/(3^99)<1 nên 2M<1 nên M<1/2(điều phải chứng minh)
Bạn Thiên bình có 102 sai đề bài rồi
Với cả chép trên mạng nữa
\(B=\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(3B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
\(3B+B=\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)+\left(\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\right)\)
\(4B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
\(4B=1-\frac{1}{3^{100}}\)
=> \(B=\frac{1-\frac{1}{3^{100}}}{4}\)
Tính:B=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)
\(B=1+\dfrac{1}{2}\cdot\dfrac{\left(1+2\right)\cdot2}{2}+\dfrac{1}{3}\cdot\dfrac{\left(1+3\right)\cdot3}{2}+...+\dfrac{1}{20}\cdot\dfrac{\left(20+1\right)\cdot20}{2}\\ B=1+\dfrac{3}{2}+2+\dfrac{5}{2}+...+10+\dfrac{21}{2}\\ B=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+...+\dfrac{20}{2}+\dfrac{21}{2}\\ B=\dfrac{2+3+...+20+21}{2}=\dfrac{\dfrac{\left(21+2\right)\cdot20}{2}}{2}=\dfrac{23\cdot10}{2}=115\)
Tính:
B=\(\dfrac{1+2+2^2+2^3+...2^{2008}}{1-2^{2009}}\)
\(B=\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)
\(2B=\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)
\(B-2B=\)\(\dfrac{1+2+2^2+...+2^{2008}}{1-2^{2009}}\)\(-\dfrac{2+2^2+2^3+...+2^{2009}}{1-2^{2009}}\)
\(-B=\dfrac{1-2^{2009}}{1-2^{2009}}\)
B=-1
Tính:
B = \(\dfrac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
ta có:
2B = 2 + 2^2 +...+ 2^2009 / 1 - 2^2009
2B - B = (2 + 2^2 +...+ 2^2009)-(1 + 2 +...+ 2^2008) / 1 - 2^2009
B = 2^2009 - 1 / 1 - 2^2009
B = -(2^2009 - 1) / 1 - 2^2009 * (-1)
B = 1 * (-1)
B = -1
Tính:
B= \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
\(B^3=4+3\sqrt[3]{\left(2+\sqrt[]{5}\right)\left(2-\sqrt[]{5}\right)}\left(\sqrt[3]{2+\sqrt[]{5}}+\sqrt[3]{2-\sqrt[]{5}}\right)\)
\(\Leftrightarrow B^3=4-3B\)
\(\Leftrightarrow B^3+3B-4=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+B+4\right)=0\)
\(\Leftrightarrow B=1\)
\(Tính:B=\frac{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(B=\frac{\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}\)
\(B=\frac{\left(\frac{2014}{2}+1\right)+...+\left(\frac{1}{2015}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}\)
\(B=\frac{\frac{2016}{2}+...+\frac{2016}{2015}+\frac{2016}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}}\)
\(B=\frac{2016\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}}\)
\(B=2016\)
\(B=\frac{\frac{2015}{1}+\frac{2014}{2}+\frac{2013}{3}+\frac{2012}{4}+...+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=\frac{1+\left(\frac{2014}{2}+1\right)+\left(\frac{2013}{3}+1\right)+\left(\frac{2012}{4}+1\right)+...+\left(\frac{1}{2015}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=\frac{\frac{2016}{2016}+\frac{2016}{2}+\frac{2016}{3}+\frac{2016}{4}+...+\frac{2016}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=\frac{2016\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}\)
\(\Rightarrow B=2016\)
Vậy \(B=2016\)
Có \(B=\frac{\frac{2015}{1}+\frac{2014}{2}+......+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2016}}\)
Xét mẫu số:
Đặt A là mẫu số; C là tử số
\(A=\frac{2015}{1}+\frac{2014}{2}+......+\frac{1}{2015}\)
\(=\left(\frac{1}{2015}+1\right)+\left(\frac{2}{2014}+1\right)+.........+\left(\frac{2015}{1}-2014\right)\)
\(=\frac{2016}{2015}+\frac{2016}{2014}+.........+\frac{2016}{2016}\)
\(=2016.\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+..........+\frac{1}{2}\right)\)
\(=2016.C\)
\(\Rightarrow B=\frac{2016.C}{C}=2016\)
Vậy B = 2016
Tính:
b) (x2-\(\dfrac{1}{3}\)).(x4+\(\dfrac{1}{3}\)x2+\(\dfrac{1}{9}\))
giúp mình nha.
\(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)
Bài 1. Thực hiện phép tính:
b) (4-2b)3 c) (2c-3d)3
d) (3x/y-2y/x)3
Bài 2. Viết các biểu thức dưới dạng lập phương của một tổng hoặc hiệu:
a) x3+3x2+3x+1 b) m3+9m2n+27mn2+27n3
c) 8u3-48u2v+96uv2(4v)3
Bài 3.Tìm x, biết:
b) (x+1)3-(x-1)3-6(x-1)2=-10
Bài 3:
b: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)+10=0\)
\(\Leftrightarrow6x^2+12-6x^2+12x-6=0\)
hay \(x=-\dfrac{1}{2}\)
Bài 2:
a: \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
b: \(m^3+9m^2n+27mn^2+27n^3=\left(m+3n\right)^3\)
Tính:B = -\(\frac{1}{3}\)+\(\frac{1}{3^2}\)-\(\frac{1}{3^3}\)+ +\(\frac{1}{3^{50}}\)-\(\frac{1}{3^{51}}\)
\(A=-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{51}}-\frac{1}{3^{52}}\)
\(\hept{\begin{cases}A=B.\frac{1}{3}\\A+B=-\frac{1}{3}-\frac{1}{3^{52}}\end{cases}}\)
Giải hệ phương trình Bậc nhất 2 ẩn trên Bằng Phương pháp trừ Đại số
ta được \(B=\frac{\left(-1-\frac{1}{3^{51}}\right)}{4}=\frac{-\left(3^{51}+1\right)}{4.3^{51}}\)
1.tính:B=(1+1/2).(1+1/3).(1+1/4)...(1+1/9)
2.tính nhanh
a,(67/111+2/33-15/117).(1/3-1/4-1/12)
b,(2^3.5.7).(5^2.7^3)/(2.5.7^2)^2
3,chứng tỏ rằng:1/1.2+1/2.3+1/3.4....1/49.50<1
4,Học kì 1 số HS giỏi của lớp 6a bằng 2/7 số HS còn lại.Cuối năm, số HS giỏi tăng thêm 8 bạn nữa nên số HS giỏi lúc này bằng 2/3 số HS còn lại.Hỏi HK1 lúc này lớp 6a có bao nhiêu HS giỏi ?