Những câu hỏi liên quan
TL
Xem chi tiết
NL
Xem chi tiết
H24
27 tháng 8 2017 lúc 9:45

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

Bình luận (0)
H24
Xem chi tiết
AH
25 tháng 6 2020 lúc 1:02

Lời giải:

Ta thấy:

\(\text{VT}=(a+\frac{ca}{a+b})+(b+\frac{ab}{b+c})+(c+\frac{bc}{c+a})\)

\(=\frac{a(a+b+c)}{a+b}+\frac{b(a+b+c)}{b+c}+\frac{c(a+b+c)}{c+a}\)

\(=(a+b+c)\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)\)

\(\geq (a+b+c).\frac{(a+b+c)^2}{a^2+ab+b^2+bc+c^2+ac}=\frac{(a+b+c)^3}{a^2+b^2+c^2+ab+bc+ac}\) (theo BĐT Cauchy-Schwarz)

Có:

$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2+2$

$\Rightarrow a+b+c=\sqrt{a^2+b^2+c^2+2}=\sqrt{t+2}$ với $t=a^2+b^2+c^2$

Do đó:

$\text{VT}\geq \frac{\sqrt{(t+2)^3}}{t+1}$ \(=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\)

Áp dụng BĐT AM-GM:

\((t+2)^3=\left(\frac{t+1}{2}+\frac{t+1}{2}+1\right)^3\geq 27.\frac{(t+1)^2}{4}\)

\(\Rightarrow \text{VT}=\sqrt{\frac{(t+2)^3}{(t+1)^2}}\geq \sqrt{\frac{27}{4}}=\frac{3\sqrt{3}}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{\sqrt{3}}$

Bình luận (0)
H24
26 tháng 6 2020 lúc 10:05

Quay lại diễn đàn trong thinh lặng:))

Chứng minh: $$\left( a+{\frac {ab}{b+c}}+b+{\frac {bc}{c+a}}+c+{\frac {ca}{a+b}}
\right) ^{2}-{\frac {27\,ab}{4}}-{\frac {27\,ca}{4}} \geqq {\frac {27\,bc}{
4}}$$

Sau khi quy đồng, cần chứng minh$:$

$$\frac{1}{2} \sum\limits_{cyc} \left( 5\,{a}^{4}{b}^{2}+8\,{a}^{3}{b}^{3}+7\,{a}^{2}{b}^{4}+98\,{a}^
{2}{b}^{3}c+99\,{a}^{2}{b}^{2}{c}^{2}+124\,{a}^{2}b{c}^{3}+34\,a{b}^{4
}c+130\,a{b}^{3}{c}^{2}+26\,{b}^{4}{c}^{2}+44\,{b}^{3}{c}^{3}+{c}^{6}
\right) \left( a-b \right) ^{2} \geqq 0$$

Bình luận (0)
KT
Xem chi tiết
PK
Xem chi tiết
HM
6 tháng 4 2018 lúc 19:20

Cho mk k nhé!

4/1x3x5 = 1/1x3 - 1/3x5
4/3x5x7 = 1/3x5 - 1/5x7
.............
A = 1/1x3 - 1/11x13

1/1x3x5 = 1/4 x (1/1x3 - 1/3x5)
1/3x5x7 = 1/4 x (1/3x5 - 1/5x7)
..........
B = 1/4 x (1/1x3 - 1/11x13)

Bình luận (0)
LH
Xem chi tiết
Xem chi tiết
AH
6 tháng 4 2018 lúc 20:18

Lời giải:

Ta sử dụng bổ đề sau:

Bổ đề:Nếu \(a,b>0, ab\geq 1\) thì: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}(*)\)

Chứng minh:

Thực hiện biến đổi tương đương:

\((*)\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)

\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)

\(\Leftrightarrow ab(a^2+b^2+2)\geq 2a^2b^2+a^2+b^2\)

\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)

\(\Leftrightarrow (a-b)^2(ab-1)\geq 0\) (luôn đúng với mọi \(ab\geq 1\) )

Bổ đề đc chứng minh.

Quay trở lại bải toán ban đầu:

Không mất tổng quát giả sử \(c=\min (a,b,c)\)

Khi đó: \(ab=\max (ab,bc,ac)\Rightarrow ab\geq 1\)

Áp dụng bổ đề đã nêu:

\(\text{VT}=\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\geq \frac{2}{ab+1}+\frac{1}{c^2+1}\)

\(\Leftrightarrow \text{VT}\geq \frac{2c^2+ab+3}{abc^2+ab+c^2+1}\)

Ta thấy :

\(\frac{2c^2+ab+3}{abc^2+ab+c^2+1}-\frac{3}{2}=\frac{c^2+3-ab-3abc^2}{2(abc^2+ab+c^2+1)}=\frac{c^2+bc+ac-3abc^2}{2(abc^2+ab+c^2+3)}=\frac{c(a+b+c-3abc)}{2(abc^2+ab+c^2+1)}\)

Áp dụng BĐT AM_GM:

\((a+b+c)(ab+bc+ac)\geq 3\sqrt[3]{abc}.3\sqrt[3]{a^2b^2c^2}=9abc\)

\(\Rightarrow 3(a+b+c)\geq 9abc\Rightarrow a+b+c\geq 3abc\)

\(\Rightarrow \frac{2c^2+ab+3}{abc^2+ab+c^2+1}-\frac{3}{2}=\frac{c(a+b+c-3abc)}{2(abc^2+ab+c^2+1)}\geq 0\)

\(\Rightarrow \text{VT}\geq \frac{2c^2+ab+3}{abc^2+ab+c^2+1}\geq \frac{3}{2}\)

Ta có đpcm. Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)
DT
6 tháng 4 2018 lúc 21:04

Áp dụng BĐT Swarchz ta có

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{(1+1+1)^2}{1+1+1+ab+bc+ac}=\frac{9}{6} =\frac{3}{2}\)(đpcm)

Bình luận (2)
DT
6 tháng 4 2018 lúc 21:05

Dấu"=" xảy ra <=> a=b=c

Bình luận (0)
LH
Xem chi tiết
H24
Xem chi tiết
NL
3 tháng 6 2020 lúc 20:15

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

Bình luận (0)