cho AO=R ,OI=IB
MN VUÔNG GÓC VỚI OB .a/chứng minh tam giác OMB đều
b/tính MN theo R
Cho điểm A nằm ngoài đường tròn (O) bán kính R sao cho AO=2R. Kẻ tiếp tuyến AB, AC và cát tuyến AMN với (O). Gọi I là trung điểm của MN ; AC cắt AO và MN tại H và K.
a) Chứng minh OA vuông góc với BC.b) Tính OH theo R.c) Chứng minh tam giác ABC đều.d) Chứng minh AI.AK =AO.AH
cho (O,R) đường kính AB. Qua A,B kẻ 2 tiếp tuyến d và d' với (O). đường thẳng đi qua O cắt d ở M, d' tại P. Từ O kẻ tia vuông góc với MPcắt d' tại M.
a) Chứng minh OM=OP và tam giác MNP cân.
b) Kẻ OI vuông góc với MN. Chứng minh OI=R và MN là tiếp tuyến (O).
c) Chứng minh A, M, I, O thuộc 1 đường tròn. Xác định tâm và bán kính.
d) Chứng minh AM. BN không đổi khi A quay quanh O.
1) Cho đường tròn tâm O, bán kính R, đường kính AB. Điểm M thuộc (O) sao cho Am=R
a. Chứng minh tam giác AMB vuông. Tính MB theo R
b. Vẽ MN vuông góc AB (N thuộc đường tròn tâm O) . Tiếp tuyến tại M cắt đường thẳng AB tại I. Chứng minh góc MOI= góc NOI và IN là tiếp tuyến của (O)
c. Lấy điểm E thuộc cung nhỏ MN, vẽ tiếp tuyến tại E với (O) cắt IM, IN lần lượt tại C và F. Tính chu vi tam giác ICF theo R
Cho (O; R) và điểm A ngoài (O) sao cho OA=2R. Từ A vẽ hai tiếp tuyến AB và AC đến(O) với B,C là hai tiếp điểm. Chứng minh:
a)AO là đường trung trực của BC
b) tam giác ABC đều. Tính BC theo R:
c) Đường vuông góc với OB tại O và cắt AC tại E. Đường vuông góc với OC tại O cắt AB tại F. Chứng minh:
+Tứ giác AEOF là hình thoi
+EF là tiếp điểm của ( O;R)
Cho đường tròn (O; R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến d và d' với (O). Một đường thẳng qua O cắt d ở M và cắt d' ở P. Từ O vẽ một tia vuông góc với MP và cắt d' ở N
a, Chứng minh OM = OP và tam giác NMP cân
b, Gọi I là hình chiếu vuông góc của O lên MN. Chứng minh OI = R và MN là tiếp tuyến của (O)
c, Chứng minh AM. BN = R 2
d, Tìm vị trí của M để tứ giác AMNB có diện tích đạt giá trị nhỏ nhất
a, ∆MAO = ∆PBO => MO = OP => ∆MNP cân
Vì đường cao NO đồng thời là đường trung tuyến
b, 1 O I 2 - 1 O M 2 + 1 O N 2
= 1 O P 2 + 1 O N 2 = 1 O B 2 => OI = R
=> MN là tiếp tuyến của (O)
c, AM.BN = MI.IN = O I 2 = R 2
d, S A M N B = M N . A B 2
=> S A M N B min
<=> M N m i n <=> AM = R
Cho đường tròn (O;R) và 1 điểm M cách O một khoảng bằng 2R. Vẽ các tiếp tuyến MA; MB với đường tròn tâm O (B; A là các tiếp điểm).
a, Chứng minh rằng: Góc AMO = 300 và tính AM theo R
b, Chứng minh tam giác ABM đều và tính chu vi tam giác ABM theo R
c, Đường thẳng vuông góc với OB tại O cắt AM tại D. Đường thẳng vuông góc với OA tại O cắt MB tại E. Chứng minh rằng Tứ giác MDOE là hình thoi
d, Chứng minh đường thẳng DE là tiếp tuyến của (O;R)
Cho đường tròn (O; R) đường kính AB cố định. Điểm I nằm giữa hai điểm O và A sao cho \(OI=\frac{1}{3}OA\) . Kẻ dây MN vuông góc với AB tại I. Gọi C là một điểm tùy ý thuộc cung lớn MN (C khác M, N và B). Nối AC cắt MN tại E.
a) Chứng minh tứ giác IECB nội tiếp
b) Tính giá trị của biểu thức AE.AC - AI.IB theo R.
Cho đường tròn (O;R), đường kín AB. Qua A và B vẽ lần lượt 2 tiếp tuyến (d) và (d') với đường tròn (O). Một đường thẳng qua O cắt đường thẳng (d) ở M và cắt đường thẳng (d') ở P. Từ O vẽ một tia vuông góc với MP và cắt đường thẳng (d') ở N
a/ Chứng minh OM = OP và tam giác ANP cân
b/ Vẽ OI vuông góc với MN. Chứng minh OI = R và MN là tiếp tuyến của đường tròn (O)
c/ Chứng minh AM.BN = R2
d/ Tìm vị tró của M để diện tích tứ giác AMNB nhỏ nhất. Vẽ hình minh họa!
Cho đường tròn (O;R) có đường kính AB.vẽ dây AM=R.
a)CM tam giác AMB vuông và tính MB theo R
b)Vẽ đường cao OH của tam giác OMB tiếp tuyến tại điểm M của (O) cắt tỉa OH tại K.CM:KB là tiếp tuyến của (O)
c)CM;tam giác MKB đều và tính diện tích theo R
d)Gọi I là giao điểm của của OK với (O).Chứng minh I là tâm đường tròn nội tiếp tam giác MKB.
a)tam giac AMB vuông (t/c trung tuyen thuoc canh huyen)
b)de thay OK la trung truc cua MB
=>KM=KB
tgMOK=tgBOK(ccc)
=>gocOMK=OBK=90
c)tam giac MKB can co goc MBK=60=>MKB deu
d)phan nay de tu lam nhe