Lập phương trình bậc hai có các nghiệm bằng:
\(\sqrt{2008}+\sqrt{2007}và\sqrt{2008}-\sqrt{2007}\)
Giải phương trình \(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\)
\(\sqrt{2007+2008\sqrt{1-x}}=1+\sqrt{2007-2008\sqrt{1-x}}\left(x\le1\right)\)
\(\Leftrightarrow2007+2008\sqrt{1-x}=1+2007-2008\sqrt{1-x}+2\sqrt{2007-2008\sqrt{1-x}}\)
\(\Leftrightarrow2.2008\sqrt{1-x}=2\sqrt{2007-2008\sqrt{1-x}}+1\)
Đặt \(2008\sqrt{1-x}=y\ge0\)
Suy ra phương trình (1) tương đương với : \(2y-1=2\sqrt{2007-y}\Leftrightarrow4y^2-4y+1=4\left(2007-y\right)\Leftrightarrow4y^2=8027\Rightarrow y=\frac{\sqrt{8027}}{2}\)(nhận) hoặc \(y=-\frac{\sqrt{8027}}{2}\)(loại)
Từ đó suy ra \(x=\frac{16120229}{16128256}\)
Vậy \(x=\frac{16120229}{16128256}\)là nghiệm của phương trình.
Bài này nếu mình nhớ không nhầm thì nằm trong đề thi Toán Casio đúng không bạn? :))
Tìm nghiệm dương của phương trình:
(1+x-\(\sqrt{x^2-1}\) )2007 + (1+x+\(\sqrt{x^2-1}\))2007 = 22008
tính giá trị biểu thức (\(\sqrt{2009}\)-\(\sqrt{2008}\))\(x^2\)- (\(\sqrt{2008}\)-\(\sqrt{2007}\))x +6\(\sqrt{2008}\)-2\(\sqrt{2007}\)
với x = \(\frac{2\sqrt{2009}-3\sqrt{2008}+\sqrt{2007}}{\sqrt{2008}-\sqrt{2009}}\)
Tìm x:
\(\sqrt{2007+2008\sqrt{x^2+x+0,1}}=20+\sqrt{2008-2007\sqrt{x^2+x+0,1}}\)
giải phương trình \(\sqrt[3]{3x^2-x+2007}-\sqrt[3]{3x^2-7x+2008}-\sqrt[3]{6x-2009}=\sqrt[3]{2008}\)
\(P(x)=ax^2+bx+c, \ a \ne 0\)
Chứng minh rằng \(\forall m \in \mathbb{R}\) ta có :
\(P(m) = P\left( { - m - \dfrac{b}{a}} \right).\)
Từ đó tính giá trị biểu thức \((\sqrt {2009} - \sqrt {2008} )x^2 - (\sqrt 2 008 - \sqrt {2007} )x + 6\sqrt {2008} - 2\sqrt {2007}\)
với \(x = \dfrac{2 \sqrt{2009}- 3\sqrt{2008}+ \sqrt{2007}}{ \sqrt{2008}- \sqrt{2009}}\)
Sorry thiếu với \(\forall m\inℝ\)
với cả : P(x) = ax2 + bx +c , a khác 0
Bài 1: Tính P=\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
Bài 2: Rút gọn biểu thức sau: P=\(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(\sqrt{x-2008}-\left(x^2-2006\right)\sqrt{2008-x}+\dfrac{1}{\sqrt{x-2007}}=1\)
\(ĐK:\left\{{}\begin{matrix}x-2008\ge0\\2008-x\ge0\\x-2007>0\end{matrix}\right.\Leftrightarrow x=2008\)
Vậy PT có nghiệm \(x=2008\)
Bài 1: Tính P=\(\sqrt{1+2007^2+\frac{2007^2}{2008^2}}+\frac{2007}{2008}\)
Bài 2: Rút gọn biểu thức sau: P=\(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
Bài 2:
\(P=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+...+\frac{1}{\sqrt{2001}+\sqrt{2005}}\)
\(=\frac{1-\sqrt{5}}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+\frac{\sqrt{5}-\sqrt{9}}{\left(\sqrt{5}+\sqrt{9}\right)\left(\sqrt{5}-\sqrt{9}\right)}+...+\frac{\sqrt{2001}-\sqrt{2005}}{\left(\sqrt{2001}+\sqrt{2005}\right)\left(\sqrt{2001}-\sqrt{2005}\right)}\)
\(=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)
\(=\frac{1-\sqrt{5}}{-4}+\frac{\sqrt{5}-\sqrt{9}}{-4}+..+\frac{\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)
\(=\frac{1-\sqrt{2005}}{-4}\)
\(=\frac{\sqrt{2005}-1}{4}\)