Tìm x nguyên sao cho biểu thức sau có giá trị nguyên
B = \(\frac{X+1}{X+5}\)
tìm x nguyên để các biểu thức sau có giá trị nguyên
B= \(\dfrac{x+2}{x+1}\)
C= \(\dfrac{5}{2x+7}\)
Lời giải:
$B=\frac{(x+1)+1}{x+1}=1+\frac{1}{x+1}$
Để $B$ nguyên thì $\frac{1}{x+1}$ nguyên.
Với $x$ nguyên, để $\frac{1}{x+1}$ nguyên thì $1\vdots x+1$
$\Rightarrow x+1\in\left\{\pm 1\right\}$
$\Rightarrow x\in\left\{0;-2\right\}$
Với $x$ nguyên, để $\frac{5}{2x+7}$ nguyên thì:
$5\vdots 2x+7$
$\Rightarrow 2x+7\in\left\{\pm 1;\pm 5\right\}$
$\Rightarrow x\in\left\{-3;-4;-1;-6\right\}$
B=\(\dfrac{x+2}{x+1}=1\dfrac{1}{x+1}\)(x khác -1)
=> Để B nguyên thì 1 chia hết cho x+1
=> x+1 ∈Ư(1)={1,-1}
X+1 | 1 | -1 |
x | 0 | -2 |
Vậy để B nguyên thì x∈{0,-2}
C=\(\dfrac{5}{2x+7}\)(x khác -7/2)
Để C nguyên thì 5 chia hết cho 2x+7
=>2x+7∈Ư(5)={1,-1,5,-5}
2x+7 | 1 | -1 | 5 | -5 |
x | -3 | -4 | -1 | -6 |
Để C nguyên thì x∈{-3,-4,-1,-6}
Để B=\(\dfrac{x+2}{x+1}\) là số nguyên thì x+2 ⋮ x+1
x+2 ⋮ x+1
⇒x+1+1 ⋮ x+1
⇒1 ⋮ x+1
Ta có bảng:
x+1=-1 ➜x=-2
x+1=1 ➜x=0
Vậy x ∈ {-2;0}
Để C= \(\dfrac{5}{2x+7}\) là số nguyên thì 5 ⋮ 2x+7
5 ⋮ 2x+7
⇒2x+7 ∈ Ư(5)={-5;-1;1;5}
Ta có bảng giá trị:
2x+7=-5 ➜x=-6
2x+7=-1 ➜x=-4
2x+7=1 ➜x=-3
2x+7=5 ➜x=-1
Vậy x ∈ {-6;-4;-3;-1}
Chúc bạn học tốt!
a) Tìm các giá trị nguyên của \(x\) để biểu thức M=\(\dfrac{8x+1}{4x-1}\)nhận giá trị nguyên
b) Tìm giá trị nguyên của biến \(x\) để biểu thức \(A=\dfrac{5}{4-x}\)có giá trị lớn nhất
c) Tìm giá trị nguyên của biến \(x\) để biểu thức \(B=\dfrac{8-x}{x-3}\)có giá trị nhỏ nhất
(Hơi khó mọi người giúp mình với ạ)
a) Ta có: \(M=\dfrac{8x+1}{4x-5}=\dfrac{8x-10+11}{4x-5}=\dfrac{2\left(x-5\right)+11}{4x-5}=2+\dfrac{11}{4x-5}\)
Để M nhận giá trị nguyên thì \(2+\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow\dfrac{11}{4x-5}\) nhận giá trị nguyên
\(\Rightarrow11⋮4x-5\)
Vì \(x\in Z\) nên \(4x-5\in Z\)
\(\Rightarrow4x-5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{1;\pm1,5;4\right\}\)
Vậy \(x\in\left\{1;4\right\}\) thỏa mãn \(x\in Z\).
b) Ta có: \(A=\dfrac{5}{4-x}\). ĐK: \(x\ne4\)
Nếu 4 - x < 0 thì x > 4 \(\Rightarrow A>0\)
4 - x > 0 thì x < 4 \(\Rightarrow A< 0\)
Để A đạt GTLN thì 4 - x là số nguyên dương nhỏ nhất
\(\Rightarrow4-x=1\Rightarrow x=3\)
\(\Rightarrow A=\dfrac{5}{4-3}=5\)
Vậy MaxA = 5 tại x = 3
c) \(B=\dfrac{8-x}{x-3}\). ĐK: \(x\ne3\).
Ta có: \(B=\dfrac{8-x}{x-3}=\dfrac{-\left(x-8\right)}{x-3}=\dfrac{-\left(x-3\right)+5}{x-3}=\dfrac{5}{x-3}-1\)
Để B đạt giá trị nhỏ nhất thì \(\dfrac{5}{x-3}-1\) nhỏ nhất
\(\Rightarrow\dfrac{5}{x-3}\) nhỏ nhất
Nếu x - 3 > 0 thì x > 3 \(\Rightarrow\dfrac{5}{x-3}>0\)
x - 3 < 0 thì x < 3 \(\Rightarrow\dfrac{5}{x-3}< 0\)
Để \(\dfrac{5}{x-3}\) nhỏ nhất thì x - 3 là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Rightarrow x=2\)
\(\Rightarrow B=\dfrac{8-2}{2-3}=-6\)
Vậy MaxB = -6 tại x = 2.
a) Để M nhận giá trị nguyên thì \(8x+1⋮4x-1\)
\(\Leftrightarrow8x-2+3⋮4x-1\)
mà \(8x-2⋮4x-1\)
nên \(3⋮4x-1\)
\(\Leftrightarrow4x-1\inƯ\left(3\right)\)
\(\Leftrightarrow4x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow4x\in\left\{2;0;4;-2\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{1}{2};0;1;-\dfrac{1}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{0;1\right\}\)
Vậy: \(x\in\left\{0;1\right\}\)
Cho biểu thức E = 3-x/x-1. Tìm các giá trị của x để:
a. E có giá trị nguyên
b. E có giá trị nhỏ nhất
a: Để E nguyên thì -x+3 chia hết cho x-1
=>-x+1+2 chia hết cho x-1
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3;-1\right\}\)
b: \(E=\dfrac{-\left(x-3\right)}{x-1}=\dfrac{-\left(x-1-2\right)}{x-1}=-1+\dfrac{2}{x-1}\)
Để E min thì x-1=-1
=>x=0
Tìm x để biểu thức có giá trị nguyên
B= \(\dfrac{x-2}{x-5}\)
\(B=\dfrac{x-2}{x-5}=\dfrac{x-5+3}{x-5}=1+\dfrac{3}{x-5}\)
Để B nguyên thì \(\dfrac{3}{x-5}\) nguyên hay x-5∈ Ư(3)={1;-1;3;-3}
⇔ x = {6;4;8;2}
Cho biểu thức: A=\(\dfrac{\sqrt{3}-3}{\sqrt{x}+1}\)
a. Tìm x nguyên để A nhận giá trị nguyên
b. Tìm GTNN của A
a: Để A nguyên thì \(\sqrt{x}-3⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
Tìm n để biểu thức có giá trị nguyên
B= \(\dfrac{x-2}{x-5}\)
\(B=\dfrac{x-5+3}{x-5}=1+\dfrac{3}{x-5}\)
Để B nguyên
\(3\text{ }⋮\text{ }\left(x-5\right)\)
=>\(x\in\left\{2;4;6;8\right\}\)
B=x-2/x-5
=x-2/x-2-3
=1- x-2/3
vậy x-2 là ước của 3
Ư(3)={1;-1;3;-3}
-> x thuộc {3;1;5;-1}
Tìm giá trị nguyên của x sao cho biểu thức sau có giá trị nguyên:
A = \(\frac{11}{\sqrt{x}-5}\)
\(A=\frac{11}{\sqrt{x}-5}\) nguyên <=> 11 chia hết cho \(\sqrt{x}-5\)
<=>\(\sqrt{x}-5\inƯ\left(11\right)\)
<=>\(\sqrt{x}-5\in\left\{-11;-1;1;11\right\}\)
<=>\(\sqrt{x}\in\left\{-6;4;6;16\right\}\)
Vì \(\sqrt{x}\ge0\)<=>\(\sqrt{x}\in\left\{4;6;16\right\}\)
<=>\(x\in\left\{16;36;256\right\}\)
Cho biểu thức A = \(\frac{3|x|+2}{|x|+5}\)
a) Tìm số nguyên x sao cho biểu thức A có giá trị lớn nhất.
b) Tìm số nguyên x sao cho biểu thức A có giá trị nguyên.
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên