Tìm GTNN của biểu thức:
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}\)
Tìm GTNN của biểu thức:
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}\)
A=\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}\)
A=\(\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-5\right)^2}\)
A=\(\left|2x-1\right|+\left|2x-5\right|\)
Giá trị nhỏ nhất của biểu thức là - 6 khi 4x = 0 => x=0
ღ ๖ۣۜBFF ๖ۣۜNhi ღ đến đó cần lí luận tiếp nha bạn
\(A=\left|2x-1\right|+\left|2x-5\right|\)
\(A=\left|1-2x\right|+\left|2x-5\right|\ge\left|1-2x+2x-5\right|=\left|-4\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{2}\le x\le\frac{5}{2}\)
14. a. Tìm GTNN của biểu thức \(A=\sqrt{7+4x-4x^2}\)
helpp
\(MinA=0\Leftrightarrow7+4x-4x^2=0\Leftrightarrow x=\dfrac{1\pm2\sqrt{2}}{2}\)
Tìm GTNN của biểu thức:
\(A=\sqrt{4x^2+4}+\sqrt{4x^2-6x+10}\)
Tìm GTNN của biểu thức M=\(\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
Tìm GTNN của biểu thức P=\(\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
Ta có:
\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
\(=\sqrt{\left(2x\right)^2-2.2x.3+3^2}+\sqrt{\left(2x\right)^2-2.2x.2+2^2}\)
\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)
\(=\left|2x-3\right|+\left|2x-2\right|\)
\(=\left|2x-3\right|+\left|2-2x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(P\ge\left|\left(2x-3\right)+\left(2-2x\right)\right|=\left|-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)
Vậy MinP = 1 \(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)
\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)
\(=|2x-3|+|2-2x|\)
=>\(P\ge|\left(2x-3\right)+\left(2-2x\right)|=|-1|=1\)
\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)
\(=\left|2x-3\right|+\left|2x-2\right|\)
\(=\left|3-2x\right|+\left|2x-2\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(P=\left|3-2x\right|+\left|2x-2\right|\ge\left|3-2x+2x-2\right|=\left|1\right|=1\)
Đẳng thức xảy ra khi \(ab\ge0\)
=> \(\left(3-2x\right)\left(2x-2\right)\ge0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}3-2x\ge0\\2x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)
2. \(\hept{\begin{cases}3-2x\le0\\2x-2\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2x\le-3\\2x\le2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )
=> MinP = 1 <=> \(1\le x\le\frac{3}{2}\)
Tìm GTNN của biểu thức \(A=2x+\sqrt{4x^2-4x+1}\)
Ta có: \(A=2x+\sqrt{4x^2-4x+1}\)
\(=2x+\sqrt{\left(2x-1\right)^2}=2x+\left|2x-1\right|\)
TH1: \(x\ge\frac{1}{2}\). Khi đó \(A=2x+2x-1=4x-1\ge4.\frac{1}{2}-1=\frac{7}{2}\)
TH2: \(x< \frac{1}{2}\). Khi đó \(A=2x+1-2x=1\)
Vậy GTNN của A là 1 với mọi \(x< \frac{1}{2}\)
Chúc em học tập tốt :)
Tìm GTNN của biểu thức
a)\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)
b)\(\sqrt{x^2+4x+4}+\sqrt{x^2-2x+1}+\sqrt{x^2-14x+49}\)
GTNN của biểu thức
\(\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\) là
\(\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|1+2x\right|+\left|2x-3\right|\)
\(=\left|1+2x\right|+\left|3-2x\right|\)
Áp dụng BĐT : \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(\left|1+2x\right|+\left|3-2x\right|\ge\left|1+2x+3-2x\right|=4\)
Vậy GTNN của biểu thức trên là : 4 khi \(-\frac{1}{2}\le x\le\frac{3}{2}\)
Chúc bạn học tốt !!!
\(\sqrt{1+4x+4x^2}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|1+2x\right|+\left|2x-3\right|\)
\(=\left|1+2x\right|+\left|3-2x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(\left|1+2x\right|+\left|3-2x\right|\ge\left|1+2x+3-2x\right|=\left|4\right|=4\)
Đẳng thức xảy ra khi \(ab\ge0\)
=> \(\left(1+2x\right)\left(3-2x\right)\ge0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}1+2x\ge0\\3-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge-1\\-2x\ge-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-\frac{1}{2}\\x\le\frac{3}{2}\end{cases}}\Rightarrow-\frac{1}{2}\le x\le\frac{3}{2}\)
2. \(\hept{\begin{cases}1+2x\le0\\3-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le-1\\-2x\le-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-\frac{1}{2}\\x\ge\frac{3}{2}\end{cases}}\)(loại)
Vậy GTNN của biểu thức = 4 <=> \(-\frac{1}{2}\le x\le\frac{3}{2}\)
Giải các biểu thức:
a) \(\sqrt{4x^2+20x+25}\) +\(\sqrt{x^2-8x+16}\) = \(\sqrt{x^2+18x+81}\)
b) \(\sqrt{x^2-4x+5}\) + \(\sqrt{x^2-4x+8}\) + \(\sqrt{x^2-4x+9}\) = 3 + \(\sqrt{5}\)