NC

Tìm GTNN của biểu thức:

 

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}\)

MQ
2 tháng 7 2019 lúc 18:42

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-5\right)^2}\)

\(A=\left|2x-1\right|+\left|5-2x\right|\ge\left|2x-1+5-2x\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-1\right)\left(5-2x\right)\ge0\)\(\Leftrightarrow\)\(\frac{1}{2}\le x\le\frac{5}{2}\)

Mấy bài bn đăng tương tự :) 

Bình luận (0)
NL
15 tháng 7 2020 lúc 17:19

Bài làm:

Ta có: \(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-20x+25}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-5\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-5\right|\)

\(A=\left|1-2x\right|+\left|2x-5\right|\)\(\ge\left|1-2x+2x-5\right|=\left|-4\right|=4\)

Dấu "=" xảy ra khi: \(\left(1-2x\right)\left(2x-5\right)\ge0\)

Giải BPT trên ra ta được \(\frac{5}{2}\ge x\ge\frac{1}{2}\)

Vậy \(Min\left(A\right)=4\Leftrightarrow\frac{5}{2}\ge x\ge\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
ND
Xem chi tiết
DC
Xem chi tiết
QM
Xem chi tiết
NV
Xem chi tiết
QM
Xem chi tiết
LC
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết