Những câu hỏi liên quan
H24
Xem chi tiết
TO
Xem chi tiết
H24
Xem chi tiết
NA
31 tháng 3 2017 lúc 20:34

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)

    \(=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\) 

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

Bình luận (0)
HQ
31 tháng 3 2017 lúc 20:42

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)

\(\Rightarrow1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\frac{1}{27}\ge xyz\)

Ta có  \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 ) 

Xét  \(3\sqrt[3]{\frac{1}{64xyz}}\)

Ta có  \(\frac{1}{27}\ge xyz\)

\(\Rightarrow\frac{64}{27}\ge64xyz\)

\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)

\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 ) 

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)

Vậy  \(M_{min}=\frac{9}{4}\)

Bình luận (0)
TM
31 tháng 3 2017 lúc 22:15

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\ge\frac{\left(1+2+4\right)^2}{16x+16y+16z}=\frac{7^2}{16\left(x+y+z\right)}=\frac{49}{16.1}=\frac{49}{16}\)

Dấu "=" xảy ra khi \(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\). Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16x+16y+16z}=\frac{7}{16\left(x+y+z\right)}=\frac{7}{16.1}=\frac{7}{16}\)

=>\(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)

Vậy Mmin=49/16 khi \(x=\frac{1}{7};y=\frac{2}{7};z=\frac{4}{7}\)

Bình luận (0)
NM
Xem chi tiết
HH
Xem chi tiết
YN
3 tháng 1 2020 lúc 14:45

Điều kiện \(x\ne\frac{-2}{3},x\in Z\)

M=\(\frac{2019x-2020}{3x+2}=\frac{673\left(3x+2\right)-3366}{3x+2}=673-\frac{3366}{3x+2}\)

Với \(\hept{\begin{cases}x\in Z\\3x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x>\frac{-2}{3}\end{cases}}\Rightarrow\frac{3366}{3x+2}>0\Rightarrow M>0\)

Với \(\hept{\begin{cases}x\in Z\\3x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x< \frac{-2}{3}\end{cases}}\)

\(\Rightarrow\)Phân số \(\frac{3366}{3x+2}\)nhỏ nhất\(\Leftrightarrow\)mẫu nguyên âm lớn nhất

                                                        \(\Leftrightarrow3x+2=-1\) 

                                                       \(\Leftrightarrow\)\(3x=-3\)

                                                      \(\Leftrightarrow x=-1\)(Thảo mãn điều kiện)

Với x=-1 thì M=4039

Vậy Min M=4039\(\Leftrightarrow x=-1\)

Bình luận (0)
 Khách vãng lai đã xóa
PL
Xem chi tiết
NL
3 tháng 3 2019 lúc 5:47

\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}=\dfrac{3x}{2}+\dfrac{6}{x}+\dfrac{y}{2}+\dfrac{8}{y}+\dfrac{3}{2}\left(x+y\right)\)

\(\Rightarrow P\ge2\sqrt{\dfrac{3x}{2}.\dfrac{6}{x}}+2\sqrt{\dfrac{y}{2}.\dfrac{8}{y}}+\dfrac{3}{2}.6=19\)

\(\Rightarrow P_{min}=19\) khi \(\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
PH
12 tháng 6 2017 lúc 22:23

\(\Leftrightarrow\)2A\(=2X^2+2XY+2Y^2-6X+6Y\)

\(\Leftrightarrow\)\(2A\)\(=X^2+2XY+Y^2\)\(+X^2-6X+9+Y^2+6Y+9\)\(-18\)

\(\Leftrightarrow2A=\left(X+Y\right)^2+\left(X-3\right)^2+\left(Y+3\right)^2\)\(-18\)

\(\Rightarrow2A\ge-18\)

\(\Rightarrow A\ge-9\)

DẤU "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=3\\y=-3\end{cases}}\)

Bình luận (0)
NT
26 tháng 6 2017 lúc 21:02

Cảm ơn bạn nhiều

Bình luận (0)
NP
Xem chi tiết
DH
14 tháng 7 2018 lúc 9:57

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|=\left|5-1\right|=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)\left(y-2\right)=\left|\left(x+1\right)\left(y-2\right)\right|\)

                                         <=> (x+1)(y-2) lớn hơn hoặc bằng 0

<=> x+1 lớn hơn hoặc bằng 0 và y-2 lớn hơn hoặc bằng 0

       x+1 bé hơn hoặc bằng 0 và y-2 bé hơn hoặc bằng 0

<=> x lớn hơn hoặc bằng -1 và y lớn hơn hoặc bằng 2

       x bé hơn hoặc bằng -1 và y bé hơn hoặc bằng 2

<=> x lớn hơn hoặc bằng 2

       x bé hơn hoặc bằng -1

Vậy Amin = 4 khi và chỉ khi x lớn hơn hoặc bằng 2 hoặc x bé hơn hoặc bằng -1

Bình luận (0)
HY
Xem chi tiết
LA
2 tháng 3 2017 lúc 21:13

ta thấy:  (x-1)^2 >hoặc =0

             (y+3)^2 >hoặc = 0

suy ra (x-1)^2+ (y+3)^2 > hoac = 0

suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5

Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5

Vậy M đạt giá trị nhỏ nhất =5

Bình luận (0)