cho a>0, b>0 và \(\frac{1}{a}+\frac{1}{b}=1\)
CMR \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\)
cho a>0, b>0 và \(\frac{1}{a}+\frac{1}{b}=1\). cmr: \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\)
Ta có : \(\frac{1}{a}+\frac{1}{b}=1\Rightarrow\frac{a+b}{ab}=1\Rightarrow a+b=ab\)
Đặt \(A=\sqrt{a-1}+\sqrt{b-1}\)
\(\Leftrightarrow A^2=a-1+b-1+2\sqrt{\left(a-1\right)\left(b-1\right)}\)
\(=a+b-2+2\sqrt{ab-a-b+1}\)
\(=a+b-2+2\sqrt{ab-ab+1}\)(do \(a+b=ab\))
\(=a+b-2+2=a+b\)
\(\Rightarrow A=\sqrt{a+b}\)
Vậy \(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\)
Cho a > 0, b > 0 và \(\frac{1}{a}+\frac{1}{b}=1.\)CMR :
\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\)
\(\frac{1}{a}+\frac{1}{b}=1\Leftrightarrow a+b=ab\).
\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\Leftrightarrow\) \(a+b=a-1+b-1+2\sqrt{\left(a-1\right)\left(b-1\right)}\)
\(\Leftrightarrow2\sqrt{\left(a-1\right)\left(b-1\right)}=2\)\(\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\)\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\)
\(\Leftrightarrow ab-a-b+1=1\)\(\Leftrightarrow a+b=ab\) (luôn đúng).
Ta hoàn thành chứng minh.
Cho 3 số thực a,b,c khác 0 và \(\sqrt{a+b}=\sqrt{b+c}+\sqrt{a+c}\). CMR:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Cho: a;b >0 : c khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
CMR: \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Ta có \(a>0,b>0,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0,a+c\ge0,b+c\ge0\)
Do đó \(\frac{1}{c}=-\left(\frac{1}{a}+\frac{1}{b}\right)< 0\Rightarrow c< 0\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow bc+ac+ab=0\)
\(\Rightarrow c^2=c^2+bc+ac+ab\)
\(\Rightarrow c^2=c\left(c+b\right)+a\left(c+b\right)=\left(a+c\right)\left(b+c\right)\)
\(\Rightarrow-c=\sqrt{\left(a+c\right)\left(b+c\right)}\Rightarrow2\sqrt{\left(a+c\right)\left(b+c\right)}+2c=0\)
\(\Rightarrow a+b=a+c+2\sqrt{\left(a+c\right)\left(b+c\right)}+b+c\)
\(\Rightarrow a+b=\left(\sqrt{a+c}+\sqrt{b+c}\right)^2\)
\(\Rightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)(đpcm)
Hoặc cách 2 bạn có thể đi ngược lại giả thuyết.Chúc bạn học tốt.
Cho a,b > 0, c ≠ 0. CMR:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Lời giải:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow ab+bc+ac=0(*)\).
Từ $(*)$ ta thấy: \(c=\frac{-ab}{a+b}< 0\) do $a,b>0$
\(c+a=\frac{-ac}{b}>0\) do $c< 0; a,b>0$
\(c+b=\frac{-bc}{a}>0\) do $c< 0; a,b>0$
Do đó:
\((*)\Leftrightarrow c^2+ab+bc+ac=c^2\)
\(\Leftrightarrow (c+a)(c+b)=c^2\)
\(\Leftrightarrow \sqrt{(c+a)(c+b)}=|c|=-c\)
\(\Leftrightarrow 2\sqrt{(c+a)(c+b)}+2c=0\)
\(\Leftrightarrow (c+a)+(c+b)+2\sqrt{(c+a)(c+b)}=a+b\)
\(\Leftrightarrow (\sqrt{c+a}+\sqrt{c+b})^2=a+b\)
\(\Leftrightarrow \sqrt{c+a}+\sqrt{c+b}=\sqrt{a+b}\) (đpcm)
cho a,b >0, c khác 0. CMR:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Cho 3 số a,b,c >0 và \(\sqrt{a}+\sqrt{b}=\sqrt{c}\)
CMR \(\frac{1}{b+c-a}+\frac{1}{c+a-b}+\frac{1}{a+b-c}=0\)
đề sai đúng không mn?
Cho a,b,c>0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
CMR \(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{abc}\)
cho a,b,c>=0 và b=\(\frac{a+c}{2}\)
cmr: \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
Nhìn đề thấy mệt nên sửa lại đỡ mệt.
Cho \(\hept{\begin{cases}a,b,c\ge0\\b^2=\frac{a^2+c^2}{2}\end{cases}}\)
Chứng minh rằng: \(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
Giải:
Theo đề ta có:
\(b^2=\frac{a^2+c^2}{2}\)
\(\Leftrightarrow b^2-a^2=c^2-b^2\)
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=\left(c+b\right)\left(c-b\right)\)
\(\Leftrightarrow\frac{b-a}{b+c}=\frac{c-b}{a+b}\)
Ta cần chứng minh:
\(\frac{1}{a+b}+\frac{1}{b+c}=\frac{2}{c+a}\)
\(\Leftrightarrow\left(\frac{1}{a+b}-\frac{1}{c+a}\right)+\left(\frac{1}{b+c}-\frac{1}{c+a}\right)=0\)
\(\Leftrightarrow\frac{c-b}{\left(a+b\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a}{\left(b+c\right)\left(c+a\right)}+\frac{a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow\frac{b-a+a-b}{\left(b+c\right)\left(c+a\right)}=0\)
\(\Leftrightarrow0=0\)
Vậy....
cho a,b,c>0. CMR: \(\frac{1}{a\sqrt{a+b}}+\frac{1}{b\sqrt{b+c}}+\frac{1}{c\sqrt{c+a}}\ge\frac{3}{\sqrt{2abc}}\)