Những câu hỏi liên quan
ND
Xem chi tiết
TC
Xem chi tiết
NT
Xem chi tiết
PN
13 tháng 8 2020 lúc 16:09

Ta giả sử \(4\) và \(\sqrt{7}\) (*) là \(a\) và \(b\left(a,b>0\right)\) thì ta có điều hiển nhiên sau : \(a+b>a-b\)

Đặt căn ở hai bên ta được : \(\sqrt{a+b}>\sqrt{a-b}\)

Thế (*) vào ta được : \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}\)

Do VT > VP nên trừ ở VP đi một số thực dương sẽ không đổi chiều dấu 

Nên ta suy ra được \(\sqrt{4+\sqrt{7}}>\sqrt{4-\sqrt{7}}-\sqrt{2}\)

Hay viết cách khá là \(A>B\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
13 tháng 8 2020 lúc 16:11

A=Căn ( 4 + căn 7) ...... B= Căn ( 4 - Căn 7 ) - Căn 2
xét:
Nếu A < B
Thì Căn (4 + căn 7) > Căn (4 - Căn7) - Căn 2
Nếu Căn (4+ căn 7) = 0
Thì Căn (4+Căn7) - Căn 2 = 0
Mà B= Căn (4 - Căn 7) ( Tức nhỏ hơn Căn (4 + căn 7)
=> A > B

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NM
8 tháng 10 2021 lúc 20:03

\(\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}>12=\left(\sqrt{12}\right)^2\\ \Rightarrow\sqrt{5}+\sqrt{7}>\sqrt{12}\)

Bình luận (2)
HP
8 tháng 10 2021 lúc 20:04

\(\sqrt{5}+\sqrt{7}\) và \(\sqrt{12}\)

Giả sử: \(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

=> \(\left(\sqrt{5}+\sqrt{7}\right)^2>\left(\sqrt{12}\right)^2\)

<=> \(5+2\sqrt{35}+7>12\)

<=> \(12+2\sqrt{35}>12\) (thỏa mãn giả sử)

Vậy \(\sqrt{5}+\sqrt{7}>\sqrt{12}\)

Bình luận (0)
LL
Xem chi tiết
H24
11 tháng 7 2021 lúc 21:20

căn 15 < căn 16=4

căn 8 < căn 9 bằng 3 

mà 4=3=7 suy ra 7>căn 15 cộng căn 8

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
MD
11 tháng 10 2017 lúc 8:29

\(\sqrt{235}\)=15,32970972

=>15<\(\sqrt{235}\)

Bình luận (0)
HM
Xem chi tiết
VT
1 tháng 8 2018 lúc 21:20

1/

Ta có:  \(\left(1+\sqrt{15}\right)^2\)= 1 + 15 + \(2\sqrt{15}\)= 16 + \(2\sqrt{15}\)

              \(\sqrt{24}^2\)= 24 = 16 + 8

Vì:     \(\sqrt{15}^2\)= 15 < 16 =\(4^2\)

Nên:   \(\sqrt{15}< 4\)

=>       \(2\sqrt{15}< 8\)

=>       \(16+2\sqrt{15}< 24\)

=>      \(\left(1+\sqrt{15}\right)^2< \sqrt{24}^2\)

Vậy     \(1+\sqrt{15}< \sqrt{24}\)

2/

b/    \(3x-7\sqrt{x}=20\)\(\left(x\ge0\right)\)

<=> \(3x-7\sqrt{x}-20=0\)

<=> \(3x-12\sqrt{x}+5\sqrt{x}-20=0\)

<=> \(3\sqrt{x}\left(\sqrt{x}-4\right)+5\left(\sqrt{x}-4\right)=0\)

<=> \(\left(\sqrt{x}-4\right)\left(3\sqrt{x}+5\right)=0\)

<=> \(\sqrt{x}-4=0\)hoặc \(3\sqrt{x}+5=0\)

<=>   \(\sqrt{x}=4\)hoặc \(3\sqrt{x}=-5\)(vô nghiệm)

<=>   \(x=16\)

Vậy S=\(\left\{16\right\}\)

c/    \(1+\sqrt{3x}>3\)

<=> \(\sqrt{3x}>2\)

<=>   \(3x>4\)

<=>  \(x>\frac{4}{3}\)

d/      \(x^2-x\sqrt{x}-5x-\sqrt{x}-6=0\)(\(x\ge0\))

<=>   \(\left(x^2-5x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>   \(\left(x^2-6x+x-6\right)-\left(x\sqrt{x}+\sqrt{x}\right)=0\)

<=>    \([x\left(x-6\right)+\left(x-6\right)]-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x-6\right)\left(x+1\right)-\sqrt{x}\left(x+1\right)=0\)

<=>   \(\left(x+1\right)\left(x-6-\sqrt{x}\right)=0\)

<=>    \(\left(x+1\right)\left(x-3\sqrt{x}+2\sqrt{x}-6\right)=0\) 

<=>    \(\left(x+1\right)[\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)]=0\)

<=>    \(\left(x+1\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)=0\)

<=>     \(x+1=0\)  hoặc \(\sqrt{x}-3=0\)hoặc \(\sqrt{x}+2=0\)

<=>     \(x=-1\)(loại)  hoặc \(x=9\)hoặc \(\sqrt{x}=-2\)(vô nghiệm)

Vậy S={  9 }

Bình luận (0)
TA
Xem chi tiết
NT
12 tháng 9 2023 lúc 20:20

a: 2căn 2=căn 8<căn 9=3

=>\(2\sqrt{2}+7< 3+7=10\)

b: \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}\)

\(3^2=9=5+4\)

mà \(2\sqrt{6}>4\)

nên \(\left(\sqrt{2}+\sqrt{3}\right)^2>3^2\)

=>\(\sqrt{3}+\sqrt{2}>3\)

Bình luận (0)
NA
Xem chi tiết
AH
11 tháng 1 2022 lúc 8:22

Lời giải:

$3\sqrt{7}=\sqrt{3^2.7}=\sqrt{63}$

$4\sqrt{5}=\sqrt{4^2.5}=\sqrt{80}$

Mà $63<80$ nên $3\sqrt{7}< 4\sqrt{5}$

Bình luận (0)